Back to Search Start Over

Wavelets in the Deep Learning Era

Authors :
Zaccharie Ramzi
Kevin Michalewicz
Jean-Luc Starck
Thomas Moreau
Philippe Ciuciu
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Modèles et inférence pour les données de Neuroimagerie (MIND)
IFR49 - Neurospin - CEA
Source :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, 2022, 65, ⟨10.1007/s10851-022-01123-w⟩
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

International audience; Sparsity-based methods, such as wavelets, have been the state of the art for more than 20 years for inverse problems before being overtaken by neural networks. In particular, U-nets have proven to be extremely effective. Their main ingredients are a highly nonlinear processing, a massive learning made possible by the flourishing of optimization algorithms with the power of computers (GPU) and the use of large available datasets for training. It is far from obvious to say which of these three ingredients has the biggest impact on the performance. While the many stages of nonlinearity are intrinsic to deep learning, the usage of learning with training data could also be exploited by sparsity-based approaches. The aim of our study is to push the limits of sparsity to use, similarly to U-nets, massive learning and large datasets, and then to compare the results with U-nets. We present a new network architecture, called learnlets, which conserves the properties of sparsity-based methods such as exact reconstruction and good generalization properties, while fostering the power of neural networks for learning and fast calculation. We evaluate the model on image denoising tasks. Our conclusion is that U-nets perform better than learnlets on image quality metrics in distribution, while learnlets have better generalization properties.

Details

ISSN :
15737683 and 09249907
Volume :
65
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision
Accession number :
edsair.doi.dedup.....db75ec47d468173598853300e3f709fe