Back to Search
Start Over
A Local Influence Sensitivity Analysis for Incomplete Longitudinal Depression Data
- Source :
- Journal of Biopharmaceutical Statistics. 16:365-384
- Publication Year :
- 2006
- Publisher :
- Informa UK Limited, 2006.
-
Abstract
- In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple ad hoc methods that are valid only if the data are missing completely at random (MCAR), to more principled (likelihood-based or Bayesian) ignorable analyses, which are valid under the less restrictive missing at random (MAR) assumption. The availability of the necessary standard statistical software allows for such analyses in practice. Although the possibility of data missing not at random (MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are not well suited for the primary analysis in clinical trials. Therefore, rather than either forgetting about or blindly shifting to an MNAR framework, the optimal place for MNAR analyses is within a sensitivity analysis context. Such analyses can be used, for example, to assess how sensitive results from an ignorable analysis are to possible departures from MAR and how much results are affected by influential observations. In this article, we apply the local influence sensitivity tool (Verbeke et al., 2001) to a longitudinal depression trial, thereby applying it to continuous outcomes from clinical trials.
- Subjects :
- Psychiatric Status Rating Scales
Pharmacology
Statistics and Probability
Clinical Trials as Topic
Likelihood Functions
Models, Statistical
Patient Dropouts
Forgetting
Depression
Computer science
Bayesian probability
Bayes Theorem
Context (language use)
Missing data
Antidepressive Agents
Research Design
Data Interpretation, Statistical
Statistics
Econometrics
Humans
Pharmacology (medical)
Longitudinal Studies
Sensitivity (control systems)
Statistical software
Missing not at random
Subjects
Details
- ISSN :
- 15205711 and 10543406
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- Journal of Biopharmaceutical Statistics
- Accession number :
- edsair.doi.dedup.....db676403e57bac78980c24c288fdee2d