Back to Search Start Over

Haemophilus influenzae porine ompP2 gene transfer mediated by graphene oxide nanoparticles with effects on transformation process and virulence bacterial capacity

Authors :
Julia Nogueira Varela
Marcelo Lancellotti
Vitor Baranauskas
Luciana Maria de Hollanda
Helder José Ceragioli
Rafaella Fabiana Carneiro Pereira
Maria Cecilia Kraehenbuehl Amstalden
Source :
Journal of Nanobiotechnology
Publication Year :
2014
Publisher :
BioMed Central, 2014.

Abstract

Background H. influenzae is a natural competent bacterium that can uptake DNA from the environment and recombine into bacterial genome. The outbreaks of Brazilian purpuric fever, heavily polluted areas of a different H. influenzae biogroup - aegyptius - as well as gene transference between Neisseria meningitis make the transformation process an important evolutionary factor. This work studied the horizontal transference of the ompP2 gene from a multiresistant strain of H. influenzae 07 (NTHi), under the influence of graphene oxide nanoparticles in order to mimic an atmosphere rich in suspended particles and this way verify if the CFU transformants number was increased. Material and methods In this article the gene ompP2 was transformed into different strains of H. influenzae mediated or not by graphene oxide nanoparticles in suspension, followed by the adhesion tests in Hec-1B (human endometrium adenocarcinoma) and A549 (pulmonary epithelial carcinoma) cells lines. The transformation frequency and the adhesion capacity were determined in all the mutants to which the ompP2 gene was transferred and compared to their wild type strains. Results The nanoparticles increased the transformation ratio of one particular strain isolated from a pneumonia case. The adhesion patterns to A549 and Hec1b cell lines of these mutated bacteria has their capacity increased when compared to the wild type. Conclusions Graphene oxide nanoparticles aid the transformation process, helping to increase the number of CFUs, and the mutants generated with the ompP2 gene from a H. influenzae resistant strain not only present a chloramphenicol resistance but also have an increased adherence patterns in A549 and Hec1B cell lines.

Details

Language :
English
ISSN :
14773155
Volume :
12
Database :
OpenAIRE
Journal :
Journal of Nanobiotechnology
Accession number :
edsair.doi.dedup.....db5aeeaa7296fd6f96efe3a0e6ae9f6b