Back to Search Start Over

Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice

Authors :
Ngoc Lu-Nguyen
Amer F. Saleh
George Dickson
Linda Popplewell
Michael J. Gait
Susan Jarmin
Source :
Molecular Therapy. 23:1341-1348
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

Details

ISSN :
15250016
Volume :
23
Database :
OpenAIRE
Journal :
Molecular Therapy
Accession number :
edsair.doi.dedup.....db1040939da369f2ca63c8d99976811a