Back to Search Start Over

Interconnectivity Explains High Canalicular Network Robustness between Neighboring Osteocyte Lacunae in Human Bone

Authors :
Bortel, E.
Liam Grover
Neil Eisenstein
Seim, C.
Suhonen, H.
Pacureanu, A.
Westenberger, P.
Raum, K.
Langer, M.
Peyrin, F.
owen addison
Bernhard Hesse
University of Helsinki
Department of Physics
Xploraytion [Berlin]
University of Birmingham [Birmingham]
Technical University Berlin
Helsingin yliopisto = Helsingfors universitet = University of Helsinki
European Synchroton Radiation Facility [Grenoble] (ESRF)
Thermo Fisher Scientific Inc.
Charité - UniversitätsMedizin = Charité - University Hospital [Berlin]
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC )
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
King‘s College London
Langer, Max
Source :
King's College London, Advanced NanoBiomed Research, Advanced NanoBiomed Research, 2022, 2 (4), pp.2100090. ⟨10.1002/anbr.202100090⟩
Publication Year :
2022

Abstract

International audience; Osteocytes are the most frequent bone cells connected with each other through cell processes within tiny tubular-shaped canaliculi. The so-called osteocyte lacunar-canalicular network (LCN) plays a crucial role in bone remodeling and mineral homeostasis. Given the critical nature of these functions, it is herein hypothesized that the LCN must be structurally “overengineered” to provide network resilience. This hypothesis is tested by characterizing canalicular networks in human bone at the fundamental “building-block” level of LCN formed by two adjacent osteocytes. As the hierarchical micro- and macroscale structure of bone is influenced by anatomical location, subjected loads, and growth rate, three distinct tissue types are studied. These include femur, jaw, and heterotopic ossification (HO), a rapidly forming mineralized tissue found in soft tissue compartments following severe trauma. It is found that the LCNs at the fundamental level are composed of hundreds of canalicular segments but of only few separated groups of linked canaliculi (canalicular clusters), resulting in a strongly pronounced interconnectivity. Fluid permeability simulations on intact and artificially altered LCN suggest that the function of the LCN is not only to optimize rapid and efficient access to bone mineral, but also to maintain high permeability when inevitable local interruption of canaliculi occurs.

Details

Language :
English
ISSN :
26999307
Database :
OpenAIRE
Journal :
King's College London, Advanced NanoBiomed Research, Advanced NanoBiomed Research, 2022, 2 (4), pp.2100090. ⟨10.1002/anbr.202100090⟩
Accession number :
edsair.doi.dedup.....daeeb7674948c561fe0c0bea7ea41a42