Back to Search Start Over

Numerical and experimental validation of the applicability of active‐DTS experiments to estimate thermal conductivity and groundwater flux in porous media

Authors :
Laurent Longuevergne
Benoît Nauleau
Behzad Pouladi
Alain Crave
Gilles Porel
Nicolas Lavenant
Nataline Simon
Olivier Bour
Géosciences Rennes (GR)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
Hydrogéologie, Argiles, Sols, Altérations (E2) (HydrASA)
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)
Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
INSU-CNRS through the Service National d'Observation H+
Agence de l'Eau Loire Bretagne
INSU EC2CO program (project HOTFLUX)
ANR-11-EQPX-0011,CRITEX,Parc national d'équipements innovants pour l'étude spatiale et temporelle de la Zone Critique des Bassins Versants(2011)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Source :
Water Resources Research, Water Resources Research, American Geophysical Union, 2021, 57 (1), pp.e2020WR028078. ⟨10.1029/2020WR028078⟩, Water Resources Research, 2021, 57 (1), pp.e2020WR028078. ⟨10.1029/2020WR028078⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Groundwater flow depends on the heterogeneity of hydraulic properties whose field characterization is challenging. Recently developed active‐Distributed Temperature Sensing (DTS) experiments offer the possibility to directly measure groundwater fluxes resulting from heterogeneous flow fields. Here, based on fundamental principles and numerical simulations, two interpretation methods of active‐DTS experiments are proposed to estimate both the porous media thermal conductivities and the groundwater fluxes in sediments. These methods rely on the interpretation of the temperature increase measured along a single heated fiber optic (FO) cable and consider heat transfer processes occurring both through the FO cable itself and through the porous media. The first method relies on the Moving Instantaneous Line Source (MILS) model that reproduces the temperature increase and provides estimates of thermal conductivity and groundwater flux as well as an evaluation of the temperature rise due to the FO cable. The second method, based on the graphical identification of three characteristic times, provides complementary estimates of flux, fully independent of the effect of the FO cable. Sandbox experiments provide an experimental validation of the interpretation methods, demonstrate the excellent accuracy of groundwater flux estimates (< 5%) and highlight the complementarity of both methods. Active‐DTS experiments allow investigating groundwater fluxes over a large range spanning 1x10‐6 to 5x10‐2 m/s, depending on the duration of the experiment. Considering the applicability of active‐DTS experiments in different contexts, we propose a general experimental framework for the application of both interpretation methods in the field, making active‐DTS field experiments especially promising for many subsurface applications.

Details

Language :
English
ISSN :
00431397 and 19447973
Database :
OpenAIRE
Journal :
Water Resources Research, Water Resources Research, American Geophysical Union, 2021, 57 (1), pp.e2020WR028078. ⟨10.1029/2020WR028078⟩, Water Resources Research, 2021, 57 (1), pp.e2020WR028078. ⟨10.1029/2020WR028078⟩
Accession number :
edsair.doi.dedup.....dae3856525f082e50ca34949af08855d
Full Text :
https://doi.org/10.1029/2020WR028078⟩