Back to Search
Start Over
Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing
- Source :
- Sensors, Vol 20, Iss 2235, p 2235 (2020), Sensors, Volume 20, Issue 8, Sensors, 20(8), Sensors (Basel, Switzerland)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Distributed temperature sensing (DTS) systems can be used to estimate the temperature along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the Raman spectrum. The scattering-loss coefficients for these wavelengths are temperature-dependent, so that the temperature along the fiber can be estimated using calibration to fiber sections with a known temperature. A new calibration approach is developed that allows for an estimate of the uncertainty of the estimated temperature, which varies along the fiber and with time. The uncertainty is a result of the noise from the detectors and the uncertainty in the calibrated parameters that relate the backscatter intensity to temperature. Estimation of the confidence interval of the temperature requires an estimate of the distribution of the noise from the detectors and an estimate of the multi-variate distribution of the parameters. Both distributions are propagated with Monte Carlo sampling to approximate the probability density function of the estimated temperature, which is different at each point along the fiber and varies over time. Various summarizing statistics are computed from the approximate probability density function, such as the confidence intervals and the standard uncertainty (the estimated standard deviation) of the estimated temperature. An example is presented to demonstrate the approach and to assess the reasonableness of the estimated confidence intervals. The approach is implemented in the open-source Python package &ldquo<br />dtscalibration&rdquo
- Subjects :
- fiber optic
Optical fiber
010504 meteorology & atmospheric sciences
Stokes
0208 environmental biotechnology
Monte Carlo method
Probability density function
02 engineering and technology
lcsh:Chemical technology
01 natural sciences
Biochemistry
Article
Standard deviation
Analytical Chemistry
law.invention
law
lcsh:TP1-1185
Electrical and Electronic Engineering
uncertainty
Instrumentation
Raman
confidence intervals
0105 earth and related environmental sciences
Physics
distributed temperature sensing
Detector
Correction
temperature
calibration
Laser
Atomic and Molecular Physics, and Optics
Confidence interval
020801 environmental engineering
Computational physics
Wavelength
DTS
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 20
- Issue :
- 2235
- Database :
- OpenAIRE
- Journal :
- Sensors
- Accession number :
- edsair.doi.dedup.....dacccd95e3b88c18330c3a15b5e32b25