Back to Search Start Over

Purification, Identification, and Biochemical Characterization of a Host-Encoded Cysteine Protease That Cleaves a Leishmaniavirus Gag-Pol Polyprotein

Authors :
Ricardo Carrion
Jean L. Patterson
Young Tae Ro
Source :
Journal of Virology. 77:10448-10455
Publication Year :
2003
Publisher :
American Society for Microbiology, 2003.

Abstract

Leishmania RNA virus (LRV) is a double-stranded RNA virus that infects some strains of the protozoan parasite Leishmania . As with other totiviruses, LRV presumably expresses its polymerase by a ribosomal frameshift, resulting in a capsid-polymerase fusion protein. We have demonstrated previously that an LRV capsid-polymerase polyprotein is specifically cleaved by a Leishmania -encoded cysteine protease. This study reports the purification of this protease through a strategy involving anion-exchange chromatography and affinity chromatography. By using a Sepharose-immobilized lectin, concanavalin A, we isolated a fraction enriched with LRV polyprotein-specific protease activity. Analysis of the active fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoreses and silver staining revealed a 50-kDa protein that, upon characterization by high-pressure liquid chromatography electrospray tandem mass spectrometry (electrospray ionization/MS/MS), was identified as a cysteine protease of trypanosomes. A partial amino acid sequence derived from the MS/MS data was compared with a protein database using BLAST software, revealing homology with several cysteine proteases of Leishmania and other trypanosomes. The protease exhibited remarkable temperature stability, while inhibitor studies characterized the protease as a trypsin-like cysteine protease—a novel finding for Leishmania . To elucidate substrate preferences, a panel of deletion mutations and single-amino-acid mutations were engineered into a Gag-Pol fusion construct that was subsequently transcribed and translated in vitro and then used in cleavage assays. The data suggest that there are a number of cleavage sites located within a 153-amino-acid region spanning both the carboxy-terminal capsid region and the amino-terminal polymerase domain, with LRV capsid exhibiting the greatest susceptibility to proteolysis.

Details

ISSN :
10985514 and 0022538X
Volume :
77
Database :
OpenAIRE
Journal :
Journal of Virology
Accession number :
edsair.doi.dedup.....daaa9876dbd643708f747818f71da116
Full Text :
https://doi.org/10.1128/jvi.77.19.10448-10455.2003