Back to Search Start Over

On the Behavior of Periodic Solutions of Planar Autonomous Hamiltonian Systems with Multivalued Periodic Perturbations

Authors :
Paolo Nistri
Oleg Makarenkov
Luisa Malaguti
Source :
Zeitschrift für Analysis und ihre Anwendungen. :129-144
Publication Year :
2011
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2011.

Abstract

Aim of the paper is to provide a method to analyze the behavior of $T$-periodic solutions $x_\eps, \eps>0$, of a perturbed planar Hamiltonian system near a cycle $x_0$, of smallest period $T$, of the unperturbed system. The perturbation is represented by a $T$-periodic multivalued map which vanishes as $\eps\to0$. In several problems from nonsmooth mechanical systems this multivalued perturbation comes from the Filippov regularization of a nonlinear discontinuous $T$-periodic term. \noindent Through the paper, assuming the existence of a $T$-periodic solution $x_\eps$ for $\eps>0$ small, under the condition that $x_0$ is a nondegenerate cycle of the linearized unperturbed Hamiltonian system we provide a formula for the distance between any point $x_0(t)$ and the trajectories $x_\eps([0,T])$ along a transversal direction to $x_0(t).$

Details

ISSN :
02322064
Database :
OpenAIRE
Journal :
Zeitschrift für Analysis und ihre Anwendungen
Accession number :
edsair.doi.dedup.....da88ae04d5f9595da8d244a8542c9990
Full Text :
https://doi.org/10.4171/zaa/1428