Back to Search Start Over

Dynamical mean-field theory of the small polaron

Authors :
Sergio Ciuchi
Simone Fratini
F. de Pasquale
Denis Feinberg
Source :
Scopus-Elsevier
Publication Year :
1997
Publisher :
American Physical Society (APS), 1997.

Abstract

A dynamical mean-field theory of the small polaron problem is presented, which becomes exact in the limit of infinite dimensions. The ground state properties and the one-electron spectral function are obtained for a single electron interacting with Einstein phonons by a mapping of the lattice problem onto a polaronic impurity model. The one-electron propagator of the impurity model is calculated through a continued fraction expansion (CFE), both at zero and finite temperature, for any electron-phonon coupling and phonon energy. In contrast to the ground state properties such as the effective polaron mass, which have a smooth behaviour, spectral properties exhibit a sharp qualitative change at low enough phonon frequency: beyond a critical coupling, one energy gap and then more and more open in the density of states at low energy, while the high energy part of the spectrum is broad and can be explained by a strong coupling adiabatic approximation. As a consequence narrow and coherent low-energy subbands coexist with an incoherent featureless structure at high energy. The subbands denote the formation of quasiparticle polaron states. Also, divergencies of the self-energy may occur in the gaps. At finite temperature such effect triggers an important damping and broadening of the polaron subbands. On the other hand, in the large phonon frequency regime such a separation of energy scales does not exist and the spectrum has always a multipeaked structure.<br />21 Pages Latex, 19 PostScript figures

Details

ISSN :
10953795 and 01631829
Volume :
56
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....da8303639ced4c3716c54e55c31dee0e
Full Text :
https://doi.org/10.1103/physrevb.56.4494