Back to Search Start Over

Neural Network-Based Dynamic Segmentation and Weighted Integrated Matching of Cross-Media Piano Performance Audio Recognition and Retrieval Algorithm

Authors :
Tianshu Wang
Source :
Computational Intelligence and Neuroscience. 2022:1-13
Publication Year :
2022
Publisher :
Hindawi Limited, 2022.

Abstract

This paper presents a dynamic segmentation and weighted comprehensive matching algorithm based on neural networks for cross-media piano performance audio recognition and retrieval. The 3D convolutional neural network process is separated to compress the network parameters and improve the computational speed. Skip connection and layer-wise learning rate solve the problem that the separated network is challenging to train. The piano performance audio recognition is facilitated by shuffle operation. In pattern recognition, music retrieval algorithms are gaining more and more attention due to their ease of implementation and efficiency. However, the problems of imprecise dynamic note segmentation and inconsistent matching templates directly affect the accuracy of the MIR algorithm. We propose a dynamic threshold-based segmentation and weighted comprehensive matching algorithm to solve these problems. The amplitude difference step is dynamically set, and the notes are segmented according to the changing threshold to improve the accuracy of note segmentation. A standard score frequency is used to transform the pitch template to achieve input normalization to enhance the accuracy of matching. Direct matching and DTW matching are fused to improve the adaptability and robustness of the algorithm. Finally, the effectiveness of the method is experimentally demonstrated. This paper implements the data collection and processing, audio recognition, and retrieval algorithm for cross-media piano performance big data through three main modules: the collection, processing, and storage module of cross-media piano performance big data, the building module of audio recognition of cross-media piano performance big data, and the dynamic precision module of cross-media piano performance big data.

Details

ISSN :
16875273 and 16875265
Volume :
2022
Database :
OpenAIRE
Journal :
Computational Intelligence and Neuroscience
Accession number :
edsair.doi.dedup.....da4ca1a16eabde0c76dc30e2ce8cf130