Back to Search Start Over

A Survey of Supernet Optimization and its Applications: Spatial and Temporal Optimization for Neural Architecture Search

Authors :
Cha, Stephen
Kim, Taehyeon
Lee, Hayeon
Yun, Se-Young
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

This survey focuses on categorizing and evaluating the methods of supernet optimization in the field of Neural Architecture Search (NAS). Supernet optimization involves training a single, over-parameterized network that encompasses the search space of all possible network architectures. The survey analyses supernet optimization methods based on their approaches to spatial and temporal optimization. Spatial optimization relates to optimizing the architecture and parameters of the supernet and its subnets, while temporal optimization deals with improving the efficiency of selecting architectures from the supernet. The benefits, limitations, and potential applications of these methods in various tasks and settings, including transferability, domain generalization, and Transformer models, are also discussed.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....da0f444f7a948f0a2888ca070771b404
Full Text :
https://doi.org/10.48550/arxiv.2204.03916