Back to Search Start Over

Rheological Properties of Aqueous Dispersions of Bacterial Cellulose

Authors :
I. S. Makarov
Peter S. Gromovykh
L. K. Golova
M. I. Vinogradov
Valery G. Kulichikhin
Source :
Processes, Vol 8, Iss 423, p 423 (2020), Processes, Volume 8, Issue 4
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Bacterial cellulose as polysaccharide possessing outstanding chemical purity and a unique structure compared with wood cellulose, attracts great attention as a hydrocolloid system. It was shown, that at intense mechanical action on a neat bacterial cellulose film in presence of water, the gel-like dispersions are obtained. They retain stability in time (at least, up to several months) and temperature (at least, up to 60 &deg<br />C) without macro-phase separation on aqueous and cellulose phases. The main indicator of the stability is constant viscosity values in time, as well as fulfilling the Arrhenius dependence for temperature dependence of viscosity. Flow curves of diluted dispersions (BC content less than 1.23%) show strong non-Newtonian behavior over the entire range of shear rates. It is similar with dispersions of micro- and nanocrystalline cellulose, but the absolute viscosity value is much higher in the case of BC due to more long fibrils forming more dense entanglements network than in other cases. Measuring the viscosity in increase and decrease shear rate modes indicate an existence of hysteresis loop, i.e., thixotropic behavior with time lag for recovering the structural network. MCC and NCC dispersions even at cellulose content more than 5% do not demonstrate such behavior. According to oscillatory measurements, viscoelastic behavior of dispersions corresponds to gel-like systems with almost total independence of moduli on frequency and essentially higher values of the storage modulus compared with the loss modulus.

Details

Language :
English
ISSN :
22279717
Volume :
8
Issue :
423
Database :
OpenAIRE
Journal :
Processes
Accession number :
edsair.doi.dedup.....da076968ad5503356d78667779091d07