Back to Search Start Over

Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces

Authors :
Karin John
Uwe Thiele
Sigolene Lecuyer
Sarah Trinschek
LIPHY-DYFCOM
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy)
Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Department of Mathematical Sciences [Loughborough]
Loughborough University
Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Physical Review Letters, Physical Review Letters, American Physical Society, 2017, 119 (7), HAL
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.

Details

Language :
English
ISSN :
00319007 and 10797114
Database :
OpenAIRE
Journal :
Physical Review Letters, Physical Review Letters, American Physical Society, 2017, 119 (7), HAL
Accession number :
edsair.doi.dedup.....da0134795efacce96cb505f0ec70fa1f