Back to Search Start Over

Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein

Authors :
Gerald H. Learn
Anke Heigele
Elisabeth Hermkes
Martine Peeters
Frederic Bibollet-Ruche
Oliver T. Fackler
Silvia F. Kluge
Markus Moll
Daniel Unterweger
Shariq M. Usmani
Daniel Sauter
Joëlle V. Fritz
Edward D. Barker
Frank Kirchhoff
Michael Vogl
Beatrice H. Hahn
Source :
PLoS Pathogens, PLoS Pathogens, Vol 8, Iss 12, p e1003093 (2012)
Publication Year :
2012

Abstract

HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.<br />Author Summary Differences in their degree of adaptation to humans may explain why only one of four ape-derived SIV zoonoses spawned the AIDS pandemic. Specifically, only HIV-1 strains of the pandemic M group evolved a fully functional Vpu that efficiently antagonizes human tetherin and degrades CD4. In comparison, the rare group N viruses gained some anti-tetherin activity but lost the CD4 degradation function. Here, we show that the N-Vpu transmembrane domain has adapted to interact with human tetherin and identified the mutations that enable this interaction. However, we also show that most N-Vpus remain poor tetherin antagonists and fail to reduce the surface expression of CD4, the natural killer cell ligand NTB-A and the lipid-antigen presenting protein CD1d. This is due to mutations in their cytoplasmic region that are associated with aberrant protein localization and impaired interaction with the ubiquitin/proteasome pathway. A remarkable exception is the Vpu of the first HIV-1 N strain known to be transmitted outside of Cameroon, which contains a functional cytoplasmic domain and is a highly effective tetherin antagonist. These data indicate that group N viruses are still adapting to humans and that the acquisition of potent anti-tetherin activity may eventually lead to the emergence of viral variants that exhibit increased transmission fitness.

Details

ISSN :
15537374
Volume :
8
Issue :
12
Database :
OpenAIRE
Journal :
PLoS pathogens
Accession number :
edsair.doi.dedup.....d9e84e29876729eec374c2357abfc659