Back to Search
Start Over
Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells
- Source :
- American Journal of Physiology-Cell Physiology. 295:C590-C599
- Publication Year :
- 2008
- Publisher :
- American Physiological Society, 2008.
-
Abstract
- We previously found that the phosphorylation of ERK1/2 by submaximal concentrations of the muscarinic receptor ligand carbachol was potentiated in rat parotid acinar cells exposed to ouabain, a cardiac glycoside that inhibits the Na-K-ATPase. We now report that this signaling phenomenon involves the prevention of negative regulation of extracellular signal-regulated kinase-1/2 (ERK1/2) that is normally mediated by AMP-activated protein kinase (AMPK). Carbachol increases the turnover of the ATP-consuming Na-K-ATPase, reducing intracellular ATP and promoting the phosphorylation/activation of the energy sensor AMPK. Ouabain blocks the reduction in ATP and subsequent AMPK phosphorylation, which is regulated by the AMP-to-ATP ratio. The ouabain-promoted enhancement of ERK1/2 phosphorylation was not reproduced in Par-C10 cells, an immortalized rat parotid cell line that did not respond to carbachol with an ATP reduction and that employs an upstream AMPK kinase (Ca2+/calmodulin-dependent protein kinase kinase, CaMKK) different from that (LKB1) in native cells. In native parotid cells, inhibitory effects of AMPK on ERK1/2 signaling were examined by activating AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), which is converted to an AMP mimetic but does not alter parotid ATP levels. AICAR-treated cells display increases in AMPK phosphorylation and a reduced phosphorylation of ERK1/2 subsequent to activation of muscarinic and P2X7 receptors, which promote increases in Na-K-ATPase turnover, but not upon epidermal growth factor receptor activation. These results suggest that carbachol-initiated AMPK activation can produce a negative feedback on ERK1/2 signaling in response to submaximal muscarinic receptor activation and that increases in fluid secretion can modulate receptor-initiated signaling events indirectly by producing ion transport-dependent decreases in ATP.
- Subjects :
- Male
medicine.medical_specialty
Carbachol
Receptors and Signal Transduction
Physiology
Sodium-Potassium-Exchanging ATPase
Enzyme Activators
AMP-Activated Protein Kinases
In Vitro Techniques
Muscarinic Agonists
Protein Serine-Threonine Kinases
Ouabain
Cell Line
Rats, Sprague-Dawley
Adenosine Triphosphate
AMP-activated protein kinase
Acinus
Multienzyme Complexes
Internal medicine
Muscarinic acetylcholine receptor
medicine
Humans
Animals
Parotid Gland
Enzyme Inhibitors
Phosphorylation
Na+/K+-ATPase
Feedback, Physiological
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Dose-Response Relationship, Drug
biology
AMPK
Cell Biology
Ribonucleotides
Aminoimidazole Carboxamide
Rats
Enzyme Activation
medicine.anatomical_structure
Endocrinology
biology.protein
Energy Metabolism
Signal Transduction
medicine.drug
Subjects
Details
- ISSN :
- 15221563 and 03636143
- Volume :
- 295
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Cell Physiology
- Accession number :
- edsair.doi.dedup.....d9e468b62291eaaeab837ceb324d39b6
- Full Text :
- https://doi.org/10.1152/ajpcell.00140.2008