Back to Search
Start Over
Drinfeld-Gaitsgory functor and Matsuki duality
- Publication Year :
- 2021
-
Abstract
- Let G be a connected complex reductive group and let K be a symmetric subgroup of G. We prove a formula for the Drinfeld-Gaitsgory functor for the dg-category of K-equivariant sheaves on the flag manifold of G in terms of the Matsuki duality functor. As byproducts, we obtain a description of the Serre functor and the Deligne-Lusztig duality for (g,K)-modules.<br />11 pages
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....d9d0335be12622ede2e40684587b5420