Back to Search
Start Over
Identifying duplicate content using statistically improbable phrases
- Source :
- Bioinformatics
- Publication Year :
- 2010
- Publisher :
- Oxford University Press (OUP), 2010.
-
Abstract
- Motivation: Document similarity metrics such as PubMed's ‘Find related articles’ feature, which have been primarily used to identify studies with similar topics, can now also be used to detect duplicated or potentially plagiarized papers within literature reference databases. However, the CPU-intensive nature of document comparison has limited MEDLINE text similarity studies to the comparison of abstracts, which constitute only a small fraction of a publication's total text. Extending searches to include text archived by online search engines would drastically increase comparison ability. For large-scale studies, submitting short phrases encased in direct quotes to search engines for exact matches would be optimal for both individual queries and programmatic interfaces. We have derived a method of analyzing statistically improbable phrases (SIPs) for assistance in identifying duplicate content. Results: When applied to MEDLINE citations, this method substantially improves upon previous algorithms in the detection of duplication citations, yielding a precision and recall of 78.9% (versus 50.3% for eTBLAST) and 99.6% (versus 99.8% for eTBLAST), respectively. Availability: Similar citations identified by this work are freely accessible in the Déjà vu database, under the SIP discovery method category at http://dejavu.vbi.vt.edu/dejavu/ Contact: merrami@collin.edu
- Subjects :
- Statistics and Probability
PubMed
Databases, Factual
Abstracting and Indexing
Computer science
MEDLINE
Duplicate content
Biochemistry
Plagiarism
03 medical and health sciences
Search engine
0302 clinical medicine
Text mining
Similarity (network science)
Online search
Feature (machine learning)
Fraction (mathematics)
030212 general & internal medicine
030223 otorhinolaryngology
Molecular Biology
Information retrieval
business.industry
Original Papers
United States
Computer Science Applications
Duplicate Publications as Topic
Search Engine
Computational Mathematics
Computational Theory and Mathematics
Data and Text Mining
Precision and recall
business
Subjects
Details
- ISSN :
- 13674811 and 13674803
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Bioinformatics
- Accession number :
- edsair.doi.dedup.....d9cde5446dd598f75515a946db8d5727