Back to Search
Start Over
Overexpression of miR-101 suppresses collagen synthesis by targeting EZH2 in hypertrophic scar fibroblasts
- Source :
- Burns & Trauma
- Publication Year :
- 2021
- Publisher :
- Oxford University Press, 2021.
-
Abstract
- Background MicroRNA-101 (miR-101) is a tumor suppressor microRNA (miRNA) and its loss is associated with the occurrence and progression of various diseases. However, the biological function and target of miR-101 in the pathogenesis of hypertrophic scars (HS) remains unknown. Methods We harvested HS and paired normal skin (NS) tissue samples from patients and cultured their fibroblasts (HSF and NSF, respectively). We used quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), enzyme-linked immunosorbent assays (ELISA) and Western blot analyses to measure mRNA levels and protein expression of miR-101, enhancer of zeste homolog 2 (EZH2), collagen 1 and 3 (Col1 and Col3) and α-smooth muscle actin (α-SMA) in different in vitro conditions. We also used RNA sequencing to evaluate the relevant signaling pathways and bioinformatics analysis and dual-luciferase reporter assays to predict miR-101 targets. We utilized a bleomycin-induced fibrosis mouse model in which we injected miR-101 mimics to evaluate collagen deposition in vivo. Results We found low expression of miR-101 in HS and HSF compared to NS and NSF. Overexpressing miR-101 decreased Col1, Col3 and α-SMA expression in HSF. We detected high expression of EZH2 in HS and HSF. Knockdown of EZH2 decreased Col1, Col3 and α-SMA in HSF. Mechanistically, miR-101 targeted the 3′-untranslated region (3′UTR) of EZH2, as indicated by the decreased expression of EZH2. Overexpressing EZH2 rescued miR-101-induced collagen repression. MiR-101 mimics effectively suppressed collagen deposition in the bleomycin-induced fibrosis mouse model. Conclusions Our data reveal that miR-101 targets EZH2 in HS collagen production, providing new insight into the pathological mechanisms underlying HS formation.
- Subjects :
- Biomedical Engineering
Dermatology
Critical Care and Intensive Care Medicine
Hypertrophic scar
Western blot
In vivo
Fibrosis
microRNA
Immunology and Allergy
Medicine
EZH2
Skin
Gene knockdown
medicine.diagnostic_test
business.industry
Fibroblasts
medicine.disease
miR-101
Molecular biology
Collagen, type I, alpha 1
Hypertrophic scars
Emergency Medicine
Surgery
Collagen
Signal transduction
business
AcademicSubjects/MED00010
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 23213876 and 23213868
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Burns & Trauma
- Accession number :
- edsair.doi.dedup.....d9b2ed2b58922df66adaf3cba3a574a5