Back to Search Start Over

Targeted Disruption of Transcriptional Regulators in Chaetomium globosum Activates Biosynthetic Pathways and Reveals Transcriptional Regulator-Like Behavior of Aureonitol

Authors :
Kinya Hotta
Satoru Sugimoto
Takehito Nakazawa
Michio Sato
Kenji Watanabe
Kan'ichiro Ishiuchi
Hiroshi Noguchi
Yuta Tsunematsu
Yasutaka Gotanda
Source :
Journal of the American Chemical Society. 135:13446-13455
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

Postgenomic analysis revealed that many microorganisms carry numerous secondary metabolite biosynthetic genes on their genome. However, activities of those putative genes are not clearly reflected in the metabolic profile of the microorganisms, especially in fungi. A recent genome mining effort is promising in discovering new natural products. However, many fungi and other organisms are not amenable to molecular genetics manipulations, making the study difficult. Here we report successful engineering of Chaetomium globosum, a known producer of various valuable natural products, that allows its genetic manipulation via targeted homologous recombination. This strain permitted us to abolish transcriptional regulators associated with epigenetic silencing of secondary metabolite biosynthetic pathways, leading to the identification of the products generated by different gene clusters and isolation of novel secondary metabolites. We were able to identify six gene clusters that are responsible for the biosynthesis of 11 natural products previously known to be produced by C. globosum, including one cytochalasan and six azaphilone-type compounds. In addition, we isolated two new compounds, mollipilin A and B, that were only recently identified in a related Chaetomium species. Furthermore, our investigation into the mechanism of biosynthesis of those natural products in C. globosum also led to the discovery of a secondary metabolite, aureonitol, that acts like a transcriptional regulator for the biosynthesis of other secondary metabolites. Similar approaches should facilitate exploration of the untapped potential of fungal biosynthetic capability and identification of various unique biological functions that those secondary metabolites possess.

Details

ISSN :
15205126 and 00027863
Volume :
135
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....d9a0254e740b5f67258f70f07aaa18c6