Back to Search Start Over

Hitting minors on bounded treewidth graphs. III. Lower bounds

Authors :
Ignasi Sau
Julien Baste
Dimitrios M. Thilikos
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
Journal of Computer and System Sciences, Journal of Computer and System Sciences, Elsevier, 2020, 109, pp.56-77. ⟨10.1016/j.jcss.2019.11.002⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

For a finite collection of graphs ${\cal F}$, the ${\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, decide whether there exists $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a minor. We are interested in the parameterized complexity of ${\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\cal F}$, the smallest function $f_{{\cal F}}$ such that ${\cal F}$-M-DELETION can be solved in time $f_{{\cal F}}(tw) \cdot n^{O(1)}$ on $n$-vertex graphs. We provide lower bounds under the ETH on $f_{{\cal F}}$ for several collections ${\cal F}$. We first prove that for any ${\cal F}$ containing connected graphs of size at least two, $f_{{\cal F}}(tw)= 2^{\Omega(tw)}$, even if the input graph $G$ is planar. Our main contribution consists of superexponential lower bounds for a number of collections ${\cal F}$, inspired by a reduction of Bonnet et al.~[IPEC, 2017]. In particular, we prove that when ${\cal F}$ contains a single connected graph $H$ that is either $P_5$ or is not a minor of the banner (that is, the graph consisting of a $C_4$ plus a pendent edge), then $f_{{\cal F}}(tw)= 2^{\Omega(tw \cdot \log tw)}$. This is the third of a series of articles on this topic, and the results given here together with other ones allow us, in particular, to provide a tight dichotomy on the complexity of $\{H\}$-M-DELETION, in terms of $H$, when $H$ is connected.<br />Comment: 41 pages, 20 figures. arXiv admin note: substantial text overlap with arXiv:1907.04442, arXiv:1704.07284

Details

ISSN :
00220000 and 10902724
Database :
OpenAIRE
Journal :
Journal of Computer and System Sciences, Journal of Computer and System Sciences, Elsevier, 2020, 109, pp.56-77. ⟨10.1016/j.jcss.2019.11.002⟩
Accession number :
edsair.doi.dedup.....d99f57921ee0a711a3f8eff26d78adce
Full Text :
https://doi.org/10.48550/arxiv.2103.06614