Back to Search Start Over

Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model

Authors :
Pedro M. A. Areias
Goangseup Zi
Mohammad Silani
Timon Rabczuk
Pengfei He
Mohammed A. Msekh
M. Jamshidian
Xiaoying Zhuang
Source :
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos), Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação, instacron:RCAAP
Publication Year :
2016

Abstract

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nanocomposites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system consisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a Newton–Raphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.

Details

Language :
English
Database :
OpenAIRE
Journal :
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos), Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação, instacron:RCAAP
Accession number :
edsair.doi.dedup.....d99585fd1a5ed36aa335c8606465c593