Back to Search Start Over

The tracial moment problem and trace-optimization of polynomials

Authors :
Igor Klep
Kristijan Cafuta
Sabine Burgdorf
Janez Povh
Université de Neuchâtel
Institut de Recherche Mathématique de Rennes ( IRMAR )
Université de Rennes 1 ( UR1 )
Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 )
Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS )
Fakulteta za naravoslovje in matematiko
Univerza v Mariboru
Fakulteta za matematiko in fiziko
Univerza v Ljubljani
Faculty of logistics [Slovenia]
University of Maribor
Université de Neuchâtel (UNINE)
Institut de Recherche Mathématique de Rennes (IRMAR)
AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Source :
Mathematical Programming, Series A, Mathematical Programming, Series A, Springer, 2013, 137 (1-2), pp.557-578. 〈10.1007/s10107-011-0505-8〉, Mathematical Programming, Series A, Springer, 2013, 137 (1-2), pp.557-578. ⟨10.1007/s10107-011-0505-8⟩, Math. Programming Ser. A, Mathematical Programming, Series A, 2013, 137 (1-2), pp.557-578. ⟨10.1007/s10107-011-0505-8⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace $${f(\underline {A})}$$ can attain for a tuple of matrices $${\underline {A}}$$ ? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix *-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side—two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.

Details

Language :
English
Database :
OpenAIRE
Journal :
Mathematical Programming, Series A, Mathematical Programming, Series A, Springer, 2013, 137 (1-2), pp.557-578. 〈10.1007/s10107-011-0505-8〉, Mathematical Programming, Series A, Springer, 2013, 137 (1-2), pp.557-578. ⟨10.1007/s10107-011-0505-8⟩, Math. Programming Ser. A, Mathematical Programming, Series A, 2013, 137 (1-2), pp.557-578. ⟨10.1007/s10107-011-0505-8⟩
Accession number :
edsair.doi.dedup.....d9893924d59afa967a1b103263d44135
Full Text :
https://doi.org/10.1007/s10107-011-0505-8〉