Back to Search Start Over

Accessing marker effects and heritability estimates from genome prediction by Bayesian regularized neural networks

Authors :
Ricardo Augusto Mendonça Vieira
Marcos Deon Vilela de Resende
Cosme Damião Cruz
Leonardo Siqueira Glória
Paulo Sávio Lopes
Otávio Henrique Gomes Barbosa Dias de Siqueira
Fabyano Fonseca e Silva
Source :
LOCUS Repositório Institucional da UFV, Universidade Federal de Viçosa (UFV), instacron:UFV
Publication Year :
2016
Publisher :
Livestock Science, 2016.

Abstract

Recently, there is an increasing interest on semi- and non-parametric methods for genome-enabled prediction, among which the Bayesian regularized artificial neural networks (BRANN) stand. We aimed to evaluate the predictive performance of BRANN and to exploit SNP effects and heritability estimates using two different approaches (relative importance-RI, and relative contribution-RC). Additionally, we aimed also to compare BRANN with the traditional RR-BLUP and BLASSO by using simulated datasets. The simplest BRANN (net1), RR-BLUP and BLASSO methods outperformed other more parameterized BRANN (net2, net3, … net6) in terms of predictive ability. For both simulated traits (Y1 and Y2) the net1 provided the best h2 estimates (0.33 for both, being the true h2=0.35), whereas RR-BLUP (0.18 and 0.22 for Y1 and Y2, respectively) and BLASSO (0.20 and 0.26 for Y1 and Y2, respectively) underestimated h2. The marker effects estimated from net1 (using RI and RC approaches) and RR-BLUP were similar, but the shrinkage strength was remarkable for BLASSO on both traits. For Y1, the correlation between the true fifty QTL effects and the effects estimated for the SNPs located in the same QTL positions were 0.61, 0.60, 0.60 and 0.55, for RI, RC, RR-BLUP and BLASSO; and for Y2, these correlations were 0.81, 0.81, 0.81 and 0.71, respectively. In summary, we believe that estimates of SNP effects are promising quantitative tools to bring discussions on chromosome regions contributing most effectively to the phenotype expression when using ANN for genomic predictions.

Details

Language :
English
Database :
OpenAIRE
Journal :
LOCUS Repositório Institucional da UFV, Universidade Federal de Viçosa (UFV), instacron:UFV
Accession number :
edsair.doi.dedup.....d97d7cf08fe9daa7312a6bc63c3586f9