Back to Search Start Over

Thalamo-insular pathway conveying orofacial muscle proprioception in the rat

Authors :
Yume Uemura
Fumihiko Sato
Yumi Tsutsumi
Akiko Tomita
Ayaka Oka
Takafumi Kato
Yoshihisa Tachibana
Chiharu Kanno
Atsushi Yoshida
Jumpei Murakami
Tahsinul Haque
Katsuro Uchino
Source :
Neuroscience. 365:158-178
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Little is known about how proprioceptive signals arising from muscles reach to higher brain regions such as the cerebral cortex. We have recently shown that a particular thalamic region, the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM), receives the proprioceptive signals from jaw-closing muscle spindles (JCMSs) in rats. In this study, we further addressed how the orofacial thalamic inputs from the JCMSs were transmitted from the thalamus (VPMcvm) to the cerebral cortex in rats. Injections of a retrograde and anterograde neuronal tracer, wheat-germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), into the VPMcvm demonstrated that the thalamic pathway terminated mainly in a rostrocaudally narrow area in the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of the secondary somatosensory cortex (dGIrvs2). We also electrophysiologically confirmed that the dGIrvs2 received the proprioceptive inputs from JCMSs. To support the anatomical evidence of the VPMcvm-dGIrvs2 pathway, injections of a retrograde neuronal tracer Fluorogold into the dGIrvs2 demonstrated that the thalamic neurons projecting to the dGIrvs2 were confined in the VPMcvm and the parvicellular part of ventral posterior nucleus. In contrast, WGA-HRP injections into the lingual nerve area of core VPM demonstrated that axon terminals were mainly labeled in the core regions of the primary and secondary somatosensory cortices, which were far from the dGIrvs2. These results suggest that the dGIrvs2 is a specialized cortical region receiving the orofacial proprioceptive inputs. Functional contribution of the revealed JCMSs-VPMcvm-dGIrvs2 pathway to Tourette syndrome is also discussed.

Details

ISSN :
03064522
Volume :
365
Database :
OpenAIRE
Journal :
Neuroscience
Accession number :
edsair.doi.dedup.....d9743e40dd681deb7f97b8b58ed2ef10
Full Text :
https://doi.org/10.1016/j.neuroscience.2017.09.050