Back to Search Start Over

Coefficient identification in parabolic equations with final data

Authors :
Faouzi Triki
Equations aux Dérivées Partielles (EDP)
Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
ANR-17-CE40-0029,MultiOnde,Problèmes Inverses Multi-Onde(2017)
Source :
Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, 2021, 148, pp.342-359. ⟨10.1016/j.matpur.2021.02.004⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

International audience; In this work we determine the second-order coefficient in a parabolic equation from the knowledge of a single final data. Under assumptions on the concentration of eigenvalues of the associated elliptic operator, and the initial state, we show the uniqueness of solution, and we derive a Lipschitz stability estimate for the inversion when the final time is large enough. The Lipschitz stability constant grows exponentially with respect to the final time, which makes the inversion ill-posed. The proof of the stability estimate is based on a spectral decomposition of the solution to the parabolic equation in terms of the eigenfunctions of the associated elliptic operator, and an ad hoc method to solve a nonlinear stationary transport equation that is itself of interest.

Details

ISSN :
00217824
Volume :
148
Database :
OpenAIRE
Journal :
Journal de Mathématiques Pures et Appliquées
Accession number :
edsair.doi.dedup.....d96ceb960be28c83324bad729fc11005
Full Text :
https://doi.org/10.1016/j.matpur.2021.02.004