Back to Search Start Over

Targeting telomere biology in acute lymphoblastic leukemia

Authors :
Mutlu Kartal-Kaess
Alexander Röth
Elisabeth Oppliger Leibundgut
Monika Haubitz
Tobias M Dantonello
Gabriela M. Baerlocher
Nicole Preising
Jochen Roessler
Axel Karow
Ingrid Helsen
Roland A. Ammann
Daniela Steiner
Source :
International Journal of Molecular Sciences, Volume 22, Issue 13, Karow, Axel; Haubitz, Monika; Oppliger Leibundgut, Elisabeth; Helsen, Ingrid; Preising, Nicole; Steiner, Daniela; Dantonello, Tobias M.; Ammann, Roland A.; Roessler, Jochen; Kartal-Kaess, Mutlu; Röth, Alexander; Baerlocher, Gabriela M. (2021). Targeting Telomere Biology in Acute Lymphoblastic Leukemia. International journal of molecular sciences, 22(13) MDPI 10.3390/ijms22136653 , International Journal of Molecular Sciences, Vol 22, Iss 6653, p 6653 (2021)
Publication Year :
2021

Abstract

Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate replicative history and its potential prognostic value, we determined telomere length (TL) in lymphoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and 8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells. These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured in vitro. TL and TA might complement established markers for the identification of patients with high-risk ALL. Moreover, TA seems to be an effective therapeutic target<br />hence, telomerase inhibitors, such as imetelstat, may augment standard ALL treatment.

Details

Language :
English
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences, Volume 22, Issue 13, Karow, Axel; Haubitz, Monika; Oppliger Leibundgut, Elisabeth; Helsen, Ingrid; Preising, Nicole; Steiner, Daniela; Dantonello, Tobias M.; Ammann, Roland A.; Roessler, Jochen; Kartal-Kaess, Mutlu; R&#246;th, Alexander; Baerlocher, Gabriela M. (2021). Targeting Telomere Biology in Acute Lymphoblastic Leukemia. International journal of molecular sciences, 22(13) MDPI 10.3390/ijms22136653 <http://dx.doi.org/10.3390/ijms22136653>, International Journal of Molecular Sciences, Vol 22, Iss 6653, p 6653 (2021)
Accession number :
edsair.doi.dedup.....d928f442a2bd3baee18fddfe42dfb6ef