Back to Search Start Over

A New ℓ-step Neighbourhood Distributed Moving Horizon Estimator

Authors :
Antonello Venturino
Sylvain Bertrand
Cristina Stoica Maniu
Teodoro Alamo
Eduardo F. Camacho
Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática
Universidad de Sevilla. TEP950: Estimación, predicción, optimización y control
Universidad de Sevilla. TEP116: Automática y robótica industrial
Source :
2021 60th IEEE Conference on Decision and Control (CDC).
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

This paper focuses on Distributed State Estimation over a peer-to-peer sensor network composed by possible low-computational sensors. We propose a new ℓ-step Neighbourhood Distributed Moving Horizon Estimation technique with fused arrival cost and pre-estimation, improving the accuracy of the estimation, while reducing the computation time compared to other approaches from the literature. Simultaneously, convergence of the estimation error is improved by means of spreading the information amongst neighbourhoods, which comes natural in the sliding window data present in the Moving Horizon Estimation paradigm.

Details

Database :
OpenAIRE
Journal :
2021 60th IEEE Conference on Decision and Control (CDC)
Accession number :
edsair.doi.dedup.....d9222a7998e9b32769bd3bc1a0107c7a