Back to Search Start Over

Duality for constrained robust sum optimization problems

Authors :
Michel Volle
Nguyen Nang Dinh
Dang H. Long
Miguel A. Goberna
Universidad de Alicante. Departamento de Matemáticas
Laboratorio de Optimización (LOPT)
Vietnam National University - Ho Chi Minh City (VNU-HCM)
Fundació per a la Investigació i la Docència Maria Angustias Giménez [Barcelone] (FIDMAG)
FIDMAG Germanes Hospitalaries
Laboratoire Polymères et Matériaux Avancés (LPMA)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
EA2151 Laboratoire de Mathématiques d'Avignon (LMA)
Avignon Université (AU)
Source :
RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA), Mathematical Programming, Mathematical Programming, Springer Verlag, 2021, 189 (1-2), pp.271-297. ⟨10.1007/s10107-020-01494-1⟩
Publication Year :
2020
Publisher :
Springer Nature, 2020.

Abstract

Given an infinite family of extended real-valued functions fi, i∈I, and a family H of nonempty finite subsets of I, the H-partial robust sum of fi, i∈I, is the supremum, for J∈H, of the finite sums ∑j∈Jfj. These infinite sums arise in a natural way in location problems as well as in functional approximation problems, and include as particular cases the well-known sup function and the so-called robust sum function, corresponding to the set H of all nonempty finite subsets of I, whose unconstrained minimization was analyzed in previous papers of three of the authors (https://doi.org/10.1007/s11228-019-00515-2 and https://doi.org/10.1007/s00245-019-09596-9). In this paper, we provide ordinary and stable zero duality gap and strong duality theorems for the minimization of a given H-partial robust sum under constraints, as well as closedness and convex criteria for the formulas on the subdifferential of the sup-function. This research was supported by the National Foundation for Science & Technology Development (NAFOSTED), Vietnam, Project 101.01-2018.310, and by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and European Regional Development Fund (ERDF), Project PGC2018-097960-B-C22.

Details

Language :
English
ISSN :
00255610 and 14364646
Database :
OpenAIRE
Journal :
RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA), Mathematical Programming, Mathematical Programming, Springer Verlag, 2021, 189 (1-2), pp.271-297. ⟨10.1007/s10107-020-01494-1⟩
Accession number :
edsair.doi.dedup.....d8f5bf3f3d6e76c3e94236a4afe2fcd9
Full Text :
https://doi.org/10.1007/s10107-020-01494-1⟩