Back to Search Start Over

Asymptotics in small time for the density of a stochastic differential equation driven by a stable LEVY process

Authors :
Huong Nguyen
Emmanuelle Clément
Arnaud Gloter
Clément, Emmanuelle
Mathématiques et Informatique pour la Complexité et les Systèmes (MICS)
CentraleSupélec
Fédération de Mathématiques de l'Ecole Centrale Paris (FR3487)
Ecole Centrale Paris-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et Modélisation d'Evry (LaMME)
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et Modélisation d'Evry
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
Université d'Évry-Val-d'Essonne (UEVE)
Université Paris-Est Marne-la-Vallée (UPEM)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Ecole Centrale Paris
ENSIIE-Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
Source :
ESAIM: Probability and Statistics, ESAIM: Probability and Statistics, EDP Sciences, 2018, 22, pp.58-95. ⟨10.1051/ps/2018009⟩, ESAIM: Probability and Statistics, 2018, 22, pp.58-95. ⟨10.1051/ps/2018009⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

This work focuses on the asymptotic behavior of the density in small time of a stochastic differential equation driven by a truncatedα-stable process with indexα∈ (0, 2). We assume that the process depends on a parameterβ= (θ,σ)Tand we study the sensitivity of the density with respect to this parameter. This extends the results of [E. Clément and A. Gloter, Local asymptotic mixed normality property for discretely observed stochastic dierential equations driven by stable Lévy processes.Stochastic Process. Appl.125 (2015) 2316–2352.] which was restricted to the indexα∈ (1, 2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density and its derivative as an expectation and a conditional expectation. This permits to analyze the asymptotic behavior in small time of the density, using the time rescaling property of the stable process.

Details

Language :
English
ISSN :
12928100 and 12623318
Database :
OpenAIRE
Journal :
ESAIM: Probability and Statistics, ESAIM: Probability and Statistics, EDP Sciences, 2018, 22, pp.58-95. ⟨10.1051/ps/2018009⟩, ESAIM: Probability and Statistics, 2018, 22, pp.58-95. ⟨10.1051/ps/2018009⟩
Accession number :
edsair.doi.dedup.....d8f284dbe16fa774495316231fb554ad
Full Text :
https://doi.org/10.1051/ps/2018009⟩