Back to Search Start Over

SPIN-MATRIX POLYNOMIALS AND THE VENEZIANO FORMULA

Authors :
T. J. Nelson
Source :
Nelson, T.J.(1969). SPIN-MATRIX POLYNOMIALS AND THE VENEZIANO FORMULA. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. Retrieved from: http://www.escholarship.org/uc/item/2x39n0m5
Publication Year :
1969
Publisher :
eScholarship, University of California, 1969.

Abstract

We consider a partial-wave expansion for $\ensuremath{\pi}\ensuremath{\pi}\ensuremath{\rightarrow}\ensuremath{\pi}\ensuremath{\omega}$ in terms of the spin-matrix polynomials ${W}_{n}(z)=\frac{\ensuremath{\Gamma}(z+\frac{1}{2}n+\frac{1}{2})}{\ensuremath{\Gamma}(z\ensuremath{-}\frac{1}{2}n+\frac{1}{2})}$ rather than the conventional Legendre polynomials. This leads naturally to Veneziano's formula when his supplementary condition $\ensuremath{\alpha}(s)+\ensuremath{\alpha}(t)+\ensuremath{\alpha}(u)=2$ is invoked.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nelson, T.J.(1969). SPIN-MATRIX POLYNOMIALS AND THE VENEZIANO FORMULA. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. Retrieved from: http://www.escholarship.org/uc/item/2x39n0m5
Accession number :
edsair.doi.dedup.....d8ae041f440fdbe89bf0dcd759a31af0