Back to Search
Start Over
The effect of posterior tethers on the biomechanics of proximal junctional kyphosis: The whole human finite element model analysis
- Source :
- Scientific Reports, Vol 10, Iss 1, Pp 1-8 (2020), Scientific Reports
- Publication Year :
- 2020
- Publisher :
- Nature Publishing Group, 2020.
-
Abstract
- Little is known about the effects of posterior tethers on the development of proximal junctional kyphosis (PJK). We evaluated the ability of posterior tethers to the proximal motion segment stiffness in long instrumented spinal instrumentation and fusion using a whole body human FE model. A series of finite element (FE) analysis of long segmental spinal fusion (SF) from the upper thoracic vertebra (T1) or lower thoracic vertebra (T9) to the sacrum with pedicle screws and rods were performed using an entire human body FE model (includes 234,910 elements), and compressive stresses (CS) on the anterior column, and tensile stresses (TS) on the posterior ligamentous complex (PLC) in the upper-instrumented vertebra (UIV) and the vertebra adjacent to the UIV (UIV + 1) were evaluated with posterior tethers or without posterior tethers. The models were tested at three T1 tilts (0, 20, 40 deg.), with 20% muscle contraction. Deformable material models were assigned to all body parts. Muscle-tendon complexes were modeled by truss elements with a Hill-type muscle material model. The CS of anterior column decreased with increasing T1 slope with tethers in both models, while the CS remained relatively large in T9 model compared with T1 model (T1 UIV; 0.96 to 1.56 MPa, T9 UIV; 4.79 to 5.61 MPa). The TS of the supraspinous ligament was markedly reduced in both T1 and T9 models with posterior tethers (11–35%). High vertebral CS on UIV and UIV + 1 were seen in the T9 UIV model, and the TS on the PLC were increased in both UIV models. Posterior tethers may decrease PJK development after SF with a proximal thoracic UIV, while both posterior tethers and vertebral augmentation may be necessary to reduce PJK development with a lower thoracic UIV.
- Subjects :
- Materials science
Compressive Strength
medicine.medical_treatment
Finite Element Analysis
Kyphosis
Skeletal muscle
lcsh:Medicine
Thoracic Vertebrae
Article
03 medical and health sciences
0302 clinical medicine
Pedicle Screws
Tensile Strength
0502 economics and business
medicine
Humans
lcsh:Science
Skeleton
050210 logistics & transportation
Multidisciplinary
05 social sciences
lcsh:R
Biomechanics
Anatomy
Sacrum
medicine.disease
Vertebra
Biomechanical Phenomena
medicine.anatomical_structure
Spinal Fusion
Spinal fusion
Thoracic vertebrae
Ligaments, Articular
Ligament
lcsh:Q
medicine.symptom
030217 neurology & neurosurgery
Muscle contraction
Muscle Contraction
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 10
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....d8ac436b16e960a978152889e3daefee
- Full Text :
- https://doi.org/10.1038/s41598-020-59179-w