Back to Search
Start Over
A unified view of the Dedekind completion of pointfree function rings
- Source :
- Quaestiones Mathematicae; Vol 39, No 7 (2016); 991-1003, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Publication Year :
- 2016
- Publisher :
- National Inquiry Services Center (NISC), 2016.
-
Abstract
- We provide the appropriate unifying framework for the various descriptions of the Dedekind completion of the ring C( L ) of continuous real functions on a frame L . It is based on suitable Galois connections and a general result about Galois connections, showing once more the ubiquity of (Galois) adjunctions between partially ordered sets and their conceptual simplicity and effectiveness. Mathematics Subject Classification (2010) : Primary: 06D22; Secondary: 26A15, 54C30, 54D15. Keywords: Frame, locale, frame of reals, continuous real function, function ring, order complete, Dedekind completion, scale, normal semicontinuous real function, partial real function, Hausdorff continuous real function, cb-frame.
- Subjects :
- Mathematics::Number Theory
010102 general mathematics
Dedekind sum
Galois group
0102 computer and information sciences
Function (mathematics)
01 natural sciences
Embedding problem
Algebra
symbols.namesake
Mathematics (miscellaneous)
Real-valued function
Frame, locale, frame of reals, continuous real function, function ring, order complete, Dedekind completion, scale, normal semicontinuous real function, partial real function, Hausdorff continuous real function, cb-fram
010201 computation theory & mathematics
symbols
Dedekind eta function
Dedekind cut
0101 mathematics
Mathematics
Dedekind–MacNeille completion
Subjects
Details
- ISSN :
- 1727933X and 16073606
- Volume :
- 39
- Database :
- OpenAIRE
- Journal :
- Quaestiones Mathematicae
- Accession number :
- edsair.doi.dedup.....d89b3d65892411f8cd3975ea5de67035