Back to Search
Start Over
Preparation of Multifunctional N-Doped Carbon Quantum Dots from Citrus clementina Peel: Investigating Targeted Pharmacological Activities and the Potential Application for Fe3+ Sensing
- Source :
- Pharmaceuticals, Volume 14, Issue 9, Šafranko, S, Stankovic, A, Hajra, S, Kim, H J, Strelec, I, Dutour-Sikirić, M, Weber, I, Herak Bosnar, M, Grbčić, P, Pavelić, S K, Széchenyi, A, Mishra, Y K, Jerković, I & Jokić, S 2021, ' Preparation of Multifunctional N-Doped Carbon Quantum Dots from Citrus clementina Peel : Investigating Targeted Pharmacological Activities and the Potential Application for Fe3+ Sensing ', Pharmaceuticals, vol. 14, no. 9, 857 . https://doi.org/10.3390/ph14090857, Pharmaceuticals, Vol 14, Iss 857, p 857 (2021)
- Publication Year :
- 2021
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2021.
-
Abstract
- Carbon quantum dots (CQDs) have recently emerged as innovative theranostic nanomaterials, enabling fast and effective diagnosis and treatment. In this study, a facile hydrothermal approach for N-doped biomass-derived CQDs preparation from Citrus clementina peel and amino acids glycine (Gly) and arginine (Arg) has been presented. The gradual increase in the N-dopant (amino acids) nitrogen content increased the quantum yield of synthesized CQDs. The prepared CQDs exhibited good biocompatibility, stability in aqueous, and high ionic strength media, similar optical properties, while differences were observed regarding the structural and chemical diversity, and biological and antioxidant activity. The antiproliferative effect of CQD@Gly against pancreatic cancer cell lines (CFPAC-1) was observed. At the same time, CQD@Arg has demonstrated the highest quantum yield and antioxidant activity by DPPH scavenging radical method of 81.39 ± 0.39% and has been further used for the ion sensing and cellular imaging of cancer cells. The obtained results have demonstrated selective response toward Fe3+ detection, with linear response ranging from 7.0 µmol dm−3 to 50.0 µmol dm−3 with R2 = 0.9931 and limit of detection (LOD) of 4.57 ± 0.27 µmol dm−3. This research could be a good example of sustainable biomass waste utilization with potential for biomedical analysis and ion sensing applications.
- Subjects :
- Biocompatibility
Pharmaceutical Science
Quantum yield
Pharmacy
Nanomaterials
Pharmacy and materia medica
biocompatibility
Drug Discovery
N-doping
chemistry.chemical_classification
Detection limit
Aqueous solution
Fe3+ detection
citrus waste
carbon quantum dots
Amino acid
RS1-441
Chemistry
Interdisciplinary Natural Sciences
chemistry
Quantum dot
Ionic strength
Medicine
Molecular Medicine
Nuclear chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 14248247
- Database :
- OpenAIRE
- Journal :
- Pharmaceuticals
- Accession number :
- edsair.doi.dedup.....d8934f9eaa0ed72e5236de8548afd8c0
- Full Text :
- https://doi.org/10.3390/ph14090857