Back to Search
Start Over
Factores de riesgo para el Síndrome de Estrés Tibial Medial asociados a la cinética del countermovement jump en cadetes en formación
- Source :
- Reinking MF, Austin TM, Richter RR, Krieger MM. Medial Tibial Stress Syndrome in active individuals: a systematic review and meta-analysis of risk factors. Sports Health. 2017;9(3):252-61., Moen MH, Tol JL, Weir A, Steunebrink M, Winter TCD. Medial Tibial Stress Syndrome: a critical review. Sports Medicine. 2009;39(7):523-46., Winkelmann ZK, Anderson D, Games KE, Eberman LE. Risk factors for Medial Tibial Stress Syndrome in active individuals: an evidence-based review. 2016. p. 1049-52., Hamstra-Wright KL, Bay C, Bliven KCH. Risk factors for Medial Tibial Stress Syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. British Journal of Sports Medicine. 2015;49(6):362-9., Franklyn M, Oakes B. Aetiology and mechanisms of injury in Medial Tibial Stress Syndrome: current and future developments. World Journal of Orthopaedics. 2015;6(8):577-89., Gómez-García S. Update on Medial Tibial Stress Syndrome. Revista Científica General José María Córdova. 2016;14(17):231-48., Reshef N, Guelich DR. Medial Tibial Stress Syndrome. Clinics in Sports Medicine. 2012;31:273-90., Newman P, Witchalls J, Waddington G, Adams R. Risk factors associated with Medial Tibial Stress Syndrome in runners: a systematic review and meta-analysis. Open Access J Sports Med. 2013;4:229-41., Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Abnormally decreased regional bone density in athletes with Medial Tibial Stress Syndrome. 2001. p. 712-5., Zimmermann WO, Helmhout PH, Beutler A. Prevention and treatment of exercise related leg pain in young soldiers; a review of the literature and current practice in the Dutch Armed Forces. Journal Of The Royal Army Medical Corps. 2017;163(2):94-103., Garnock C, Witchalls J, Newman P. Predicting individual risk for Medial Tibial Stress Syndrome in navy recruits. Journal of Science and Medicine in Sport. 2018;21(6):586-90., Hauret KG, Jones BH, Canham-Chervak M, Canada S, Bullock SH. Musculoskeletal injuries: description of an under-recognized injury problem among military personnel. American Journal of Preventive Medicine. 2010;38(1S):S61-S70., Jones BH, Canham-Chervak M, Canada S, Mitchener TA, Moore LS. Medical surveillance of injuries in the U.S. Military: descriptive epidemiology and recommendations for improvement. American Journal of Preventive Medicine. 2010;38(1S):S42-S60., Ruscio BA, Jones BH, Canham-Chervak M, Bullock SH, Burnham BR, Rennix CP, et al. A process to identify military injury prevention priorities based on injury type and limited duty days. American Journal of Preventive Medicine. 2010;38(1S):S19-S33., Smith GS, Dannenberg AL, Amoroso PJ. Hospitalization due to injuries in the military. Evaluation of current data and recommendations on their use for injury prevention. American Journal of Preventive Medicine. 2000;18(1S):41-53., Lauder TD, Baker SP, Smith GS, Lincoln AE. Sports and physical training injury hospitalizations in the army. American Journal of Preventive Medicine. 2000;18(1S):118-28., Almeida SA, Williams KM, Shaffer RA, Luz JT, Badong E. A physical training program to reduce musculoskeletal injuries in U.S. Marine Corps Recruits. Naval Health Research Center; 1997., Jones BH, Hansen BC. An armed forces epidemiological board evaluation of injuries in the military. American Journal of Preventive Medicine. 2000;18(3S):14-25., Kaufman KR, Brodine S, Shaffer R. Military training-related injuries. Surveillance, research, and prevention. American Journal of Preventive Medicine. 2000;18(1S):54-63., Jones BH, Knapik JJ. Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sports Med. 1999;27(2S):111-25., Bullock SH, Jones BH, Gilchrist J, Marshall SW. Prevention of physical training-related injuries recommendations for the military and other active populations based on expedited systematic reviews. American Journal of Preventive Medicine. 2010;38(1S):S156-S81., Andersen K, Grimshaw P, Kelso R, Bentley D. Musculoskeletal lower limb injury risk in army populations. Sports Medicine-Open. 2016;2(1):1., Knapik J, Ang P, Reynolds K, Jones B. Physical fitness, age, and injury incidence in infantry soldiers. Journal of Occupational and Environmental Medicine. 1993;35(6):598-603., Abt JP, Sell TC, Lovalekar MT, Keenan KA, Bozich AJ, Lephart SM, et al. Injury epidemiology of U.S. Army special operations forces. Military Medicine. 2014;179(10):1106-12., Teyhen DS, Shaffer SW, Butler RJ, Goffar SL, Kiesel KB, Plisky PJ, et al. What risk factors are associated with musculoskeletal injury in US Army Rangers? A prospective prognostic study. Clinical Orthopaedics and Related Research. 2015;473(9):2948-58., Neves EB, Eraso NM, Narváez YS, Rairan FSG, Garcia RCF. Musculoskeletal injuries in sergeants training courses from Brazil and Colombia. Journal of Science and Medicine in Sport. 2017;20(2S):S117., Yancosek KE, Roy T, Erickson M. Rehabilitation programs for musculoskeletal injuries in military personnel. Current Opinion in Rheumatology. 2012;24(2):232-6., Songer TJ, LaPorte RE. Disabilities due to injury in the military. American Journal of Preventive Medicine. 2000;18(3S):33-40., Lincoln AE, Smith GS, Amoroso PJ, Bell NS. The natural history and risk factors of musculoskeletal conditions resulting in disability among US Army personnel. Work. 2002;18(2):99., Knapik JJ, Canham-Chervak M, Hauret K, Hoedebecke E, Laurin MJ, Cuthie J. Discharges during U.S. Army basic training: injury rates and risk factors. Military Medicine. 2001;166(7):641-7., Psaila M, Ranson C. Risk factors for lower leg, ankle and foot injuries during basic military training in the Maltese Armed Forces. Physical Therapy in Sport. 2017;24:7-12., Hewett TE, Myer GD, Ford KR, Paterno MV, Colosimo AJ, Heidt Jr RS, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. American Journal of Sports Medicine. 2005;33(4):492-501., Barnes CA, Henderson G, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. Journal of Science and Medicine in Sport. 2010;13(4):397-402., Iguchi J, Watanabe Y, Kimura M, Fujisawa Y, Hojo T, Yuasa Y, et al. Risk factors for injury among japanese collegiate players of american football based on performance test results. Journal Of Strength And Conditioning Research. 2016;30(12):3405-11., Orr R, Pope R, Peterson S, Hinton B, Stierli M. Leg power as an indicator of risk of injury or illness in police recruits. International Journal of Environmental Research and Public Health. 2016;13(2)., Gómez-Piqueras P, González-Víllora S, Sainz de Baranda Andújar MDP, Contreras-Jordán OR. Functional assessment and injury Risk in a professional soccer team. Sports (Basel, Switzerland). 2017;5(1)., Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clinical Biomechanics. 2011;26(1):23-8., Powell HC, Silbernagel KG, Brorsson A, Tranberg R, Willy RW. Individuals post-Achilles tendon rupture exhibit asymmetrical knee and ankle kinetics and loading rates during a drop countermovement jump. Journal of Orthopaedic and Sports Physical Therapy. 2018;48(1):34-43., Bisseling RW, Hot AL, Bredeweg SW, Zwerver J, Mulde T. Are the take-off and landing phase dynamics of the volleyball spike jump related to patellar tendinopathy? British Journal of Sports Medicine. 2008;42(6):483-9., Bisseling RW, Hof AL, Bredeweg SW, Zwerver J, Mulder T. Relationship between landing strategy and patellar tendinopathy in volleyball. British Journal of Sports Medicine. 2007;41(7):e8., Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI. Landing adaptations after ACL reconstruction. Medicine and Science in Sports and Exercise. 2002;34(9):1408-13., Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskeletal Disorders. 2006;7., Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine. 2007;17(4):258-62., Doherty C, Sweeney K, Caulfield B, Delahunt E, Bleakley C, Hertel J, et al. Lower extremity coordination and symmetry patterns during a drop vertical jump task following acute ankle sprain. Human Movement Science. 2014;38:34-46., Menzel H-J, Chagas MH, Szmuchrowski LA, Araujo SRS, de Andrade AGP, de Jesus-Moraleida FR. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. Journal Of Strength And Conditioning Research. 2013;27(5):1370-7., Fischer F, Fink C, Blank C, Dünnwald T, Gföller P, Hoser C, et al. Isokinetic extension strength is associated with single-leg vertical jump height. Orthopaedic Journal of Sports Medicine. 2017;5(11)., Claudino JG, Mezêncio B, Amadio AC, Serrão JC, Cronin J, McMaster DT, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. Journal of Science and Medicine in Sport. 2017;20(4):397-402., Wang H, Frame J, Ozimek E, Leib D, Dugan EL. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Research Quarterly for Exercise and Sport. 2013;84(3):305-12., Santtila M, Kyröläinen H, Häkkinen K. Changes in maximal and explosive strength, electromyography, and muscle thickness of lower and upper extremities induced by combined strength and endurance training in soldiers. Journal Of Strength And Conditioning Research. 2009;23(4):1300-8., O’Kane JW, Sabado L, Tencer A, Neradilek M, Polissar N, Schiff MA. Risk factors for lower extremity overuse injuries in female youth soccer players. Orthopaedic Journal of Sports Medicine. 2017;5(10)., Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. 2010. p. 1968-78., Yates B, White S. The incidence and risk factors in the development of Medial Tibial Stress Syndrome among naval recruits. American Journal of Sports Medicine. 2004;32(3):772-80., Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, et al. Risk factors and prognostic indicators for Medial Tibial Stress Syndrome. Scandinavian Journal of Medicine and Science in Sports. 2012;22(1):34-9., Sobhani V, Shakibaee A, Jahandideh D, Aghda AK, Meybodi MK, Delavari A. Studying the relation between Medial Tibial Stress Syndrome and anatomic and anthropometric characteristics of military male personnel. Asian Journal of Sports Medicine. 2015;6(2):1-5., Burne SG, Khan KM, Boudville PB, Mallet RJ, Newman PM, Steinman LJ, et al. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. British Journal of Sports Medicine. 2004;38(4):441-5., Plisky MS, Rauh MJ, Underwood FB, Tank RT, Heiderscheit B. Medial Tibial Stress Syndrome in high school cross-country runners: incidence and risk factors. Journal of Orthopaedic and Sports Physical Therapy. 2007;37(2):40-7., Grier T, Canham-Chervak M, McNulty V, Jones BH. Extreme conditioning programs and injury risk in a US Army brigade combat team. US Army Medical Department journal. 2013:36-47., Orgel E, Sposto R, Freyer DR, Mittelman SD, Mueske NM, Gilsanz V. Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leukemia and Lymphoma. 2018;59(1):138-45., DANE. Pobreza Monetaria y Multidimensional en Colombia: año 2017. 2018., Tounsi M, Aouichaoui C, Bouhlel E, Tabka Z, Trabelsi Y. Effect of socioeconomic status on leg muscle power in tunisian adolescent athletes. Science and Sports. 2017;32(5):303-11., El Hage R, Zakhem E, Zunquin G, Theunynck D, Moussa E, Maalouf G. Performances in vertical jump and horizontal jump tests are positive determinants of hip bone mineral density in a group of young adult men. Journal of Clinical Densitometry. 2015;18(1):136-7., Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. The American Journal of Sports Medicine. 2006;34(2):299-311., Song J, Choe K, Neary M, Cameron KL, Zifchock RA, Trepa M, et al. Comprehensive biomechanical characterization of feet in USMA cadets: comparison across race, gender, arch flexibility, and foot types. Gait and Posture. 2018;60:175-80., Knapik JJ, Sharp MA, Canham-Chervak M, Hauret K, Patton JF, Jones BH. Risk factors for training-related injuries among men and women in basic combat training. Med Sci Sports Exerc. 2001;33(6):946-54., Cormie P, Newton RU, McGuigan MR. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Medicine and Science in Sports and Exercise. 2010;42(9):1731-44., Jakobsen MD, Sundstrup E, Andersen LL, Randers MB, Krustrup P, Kjær M, et al. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science. 2012;31(4):970-86., Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology. 2001;84(3):206-12., Siegmund JA, Huxel KC, Swanik CB. Compensatory mechanisms in basketball players with jumper's knee. Journal of Sport Rehabilitation. 2008;17(4):358-71., Vernillo G, Pisoni C, Thiebat G. Strength asymmetry between front and rear leg in elite snowboard athletes. Clinical Journal of Sport Medicine. 2016;26(1):83-5., Fort-Vanmeerhaeghe A, Montalvo AM, Sitjà-Rabert M, Kiefer AW, Myer GD. Neuromuscular asymmetries in the lower limbs of elite female youth basketball players and the application of the skillful limb model of comparison. Physical Therapy in Sport. 2015;16(4):317-23., Linkenauger SA, Stefanucci JK, Proffitt DR, Witt JK, Bakdash JZ. Asymmetrical body perception: a possible role for neural body representations. Psychological Science. 2009;20(11):1373-80., Lopes TJA, Simic M, Pappas E, Bunn PS, Terra BS, Alves DS, et al. Prevalence of musculoskeletal symptoms among brazilian merchant navy cadets: differences between sexes and school years. Military Medicine. 2017;182(11):e1967-e72., Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Medicine and Science in Sports and Exercise. 1999;31(8):1176-82., Repositorio EdocUR-U. Rosario, Universidad del Rosario, instacron:Universidad del Rosario
- Publication Year :
- 2019
- Publisher :
- Universidad del Rosario, 2019.
-
Abstract
- El Síndrome de Estrés Tibial Medial (SETM) es una de las patologías más reportadas e incapacitantes en el personal militar. Debido a que los músculos de la extremidad inferior desempeñan una labor importante en la atenuación de las fuerzas de impacto al correr y aterrizar, la deficiencia y las asimetrías en la función neuromuscular, se asocian con un mayor riesgo de presentar lesiones musculoesqueléticas (LME). OBJETIVO: determinar los factores de riesgo para el SETM asociados a la cinética del countermovement jump (CMJ) en cadetes en formación. METODOLOGIA: una cohorte de 164 cadetes de primer semestre fue seguida prospectivamente durante 24 semanas. Al inicio de la investigación, se registraron los datos antropométricos y demográficos de los participantes, y, se les interrogo acerca de algunos de sus hábitos de vida y antecedentes en el uso de material ortopédico, lesiones en los miembros inferiores y SETM. La altura del salto (cm), la tasa de desarrollo de la fuerza en la desaceleración excéntrica (EDRFD [N/s*kg]), la asimetría de la EDRFD (% y %/VN), la fuerza concéntrica media (CMF [N*kg]), la asimetría de la CMF (% y %/VN), la fuerza pico en el aterrizaje (PLF [N*kg]), y la asimetría de la PLF (% y %/VN), se evaluaron a través del CMJ bilateral con un par de plataformas de fuerza uniaxial. Finalizado el seguimiento, se identificaron los cadetes que presentaron SETM mediante la historia clínica. RESULTADOS: al final del estudio quedaron 91 hombres y 32 mujeres (n= 123). La incidencia del SETM fue de 13% (n= 16). En el análisis bivariado, una mayor asimetría de la EDRFD (9,4% vs. -3,4%), el sexo femenino (RR= 2,84; IC 95%= 1,16-6,94), la procedencia rural (RR= 2,65; IC 95%= 1,04-6,72) y el antecedente de SETM (RR= 5,71; IC 95%= 2,23-14,62), se asociaron de forma significativa con el SETM (p≤0.05). En la regresión logística, una mayor asimetría de la EDRFD (OR= 1,03; IC 95%= 1,00-1,07), el sexo femenino (OR= 4,91; IC 95%= 1,38-13,37) y la procedencia rural (OR= 4,82; IC 95%= 1,04-6,72), se asociaron de forma significativa con el SETM (p≤0,05). El antecedente de SETM fue significativo en p≤0,1 (OR= 8,95; IC 95%= 0,68-118,73). El modelo predictivo fue significativo para el SETM (p≤0,01), tuvo una sensibilidad del 31,3% y una especificidad del 99,1% (pronostico global del 90,2%). CONCLUSIONES: el sexo femenino, la procedencia rural, el antecedente de SETM y una gran asimetría en la EDRFD son importantes factores de riesgo para el desarrollo del SETM. Estos hallazgos permitirán hacer una mejor predicción del SETM en el personal militar, siendo especialmente útiles para la clasificación del riesgo y la implementación de un programa de prevención primaria dirigido a los cadetes que inician su formación militar. Medial Tibial Stress Syndrome (MTSS) is one of the most frequent pathologies in military personnel. As the muscles of the lower extremity contribute to the attenuation of impact forces in activities such as running and jumping, neuromuscular performance deficiencies and asymmetries may be associated with an increased risk for musculoskeletal injuries. PURPOSE: to determine the kinetic risk factors associated with MTSS through the bilateral countermovement jump (CMJ) in army cadets. METHODS: ethical approval was granted by the General José María Córdova Military School of Cadets where the study was conducted. This observational study was executed in a cohort of 123 cadets (followed for 24 weeks) who entered to the military school in 2017. Anthropometric, demographic data and MTSS history were recorded. Jump height (cm), peak landing force (N*kg), peak landing force asymmetry (%), concentric mean force (N*kg), concentric mean force asymmetry (%), eccentric deceleration rate of force development (EDRFD [N/s*Kg]) and EDRFD asymmetry (%), were evaluated through the bilateral CMJ on a pair of uniaxial force platforms. After the follow-up, the cadets with MTSS were determined through the clinical history. RESULTS: the incidence of MTSS was 13% (n= 16). Greater EDRFD asymmetry (9,4% vs. -3,4%), female sex (RR= 2.84; 95% CI= 1.16-6.94), rural provenance (RR= 2.65; 95% CI= 1.04-6.72), and previous history of MTSSM (RR= 5.71; 95% CI= 2.23-14.62), were significantly associated with MTSS (p≤0.05). In the logistic regression, greater EDRFD asymmetry (OR= 1.03; 95% CI= 1.00-1.07), female sex (OR= 4.91; 95% CI = 1.38-13.37) and rural provenance (OR= 4.82; 95% CI= 1.04-6.72), were significantly associated with MTSS (p≤0.05). Previous history of MTSS was significant in p≤0.1 (OR= 8.95; 95% CI= 0.68-118.73). The predictive model was significant for the MTSS (p≤0.01), had a sensitivity of 31.3% and a specificity of 99.1% (overall prognosis of 90.2%). CONCLUSIONS: while we identified important non-modifiable risk factors for MTSS in cadets during basic training, we also found that greater EDRFD asymmetry was a significant risk factor. This suggests that the bilateral CMJ may be a useful tool for pre-entry screening and that high EDRFD asymmetry could be a potential target of pre-basic training risk reduction conditioning. 2021-07-11 01:01:02: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-07-10 Se le envía correo 15 jul 2019. Hemos realizado la publicación de su documento, el cual puede consultar en el siguiente enlace: http://repository.urosario.edu.co/handle/10336/19914 Usted escogió la opción "Restringido (Temporalmente bloqueado)", por lo que el documento ha quedado con embargo hasta el 10 de julio de 2021 en concordancia con las Políticas de Acceso Abierto de la Universidad. Si usted desea dejarlo con acceso abierto antes de finalizar dicho periodo puede enviar un correo a esta misma dirección realizando la solicitud. Tenga en cuenta que los documentos en acceso abierto propician una mayor visibilidad de su producción académica. Universidad del Rosario Escuela Militar de Cadetes General José María Córdova
- Subjects :
- Síndrome de estrés medial de la tibia
Personal militar
Military personnel
Salto en contramovimiento
Medial tibial stress syndrome
Cinética
Kinetics
Biomechanical phenomena
Risk factors
Militares
Fenómenos biomecánicos
Extremidades inferiores
Countermovement jump
Biomecánica
Varias ramas de la medicina, Cirugía
Factores de riesgo
Subjects
Details
- Language :
- Spanish; Castilian
- Database :
- OpenAIRE
- Journal :
- Reinking MF, Austin TM, Richter RR, Krieger MM. Medial Tibial Stress Syndrome in active individuals: a systematic review and meta-analysis of risk factors. Sports Health. 2017;9(3):252-61., Moen MH, Tol JL, Weir A, Steunebrink M, Winter TCD. Medial Tibial Stress Syndrome: a critical review. Sports Medicine. 2009;39(7):523-46., Winkelmann ZK, Anderson D, Games KE, Eberman LE. Risk factors for Medial Tibial Stress Syndrome in active individuals: an evidence-based review. 2016. p. 1049-52., Hamstra-Wright KL, Bay C, Bliven KCH. Risk factors for Medial Tibial Stress Syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. British Journal of Sports Medicine. 2015;49(6):362-9., Franklyn M, Oakes B. Aetiology and mechanisms of injury in Medial Tibial Stress Syndrome: current and future developments. World Journal of Orthopaedics. 2015;6(8):577-89., Gómez-García S. Update on Medial Tibial Stress Syndrome. Revista Científica General José María Córdova. 2016;14(17):231-48., Reshef N, Guelich DR. Medial Tibial Stress Syndrome. Clinics in Sports Medicine. 2012;31:273-90., Newman P, Witchalls J, Waddington G, Adams R. Risk factors associated with Medial Tibial Stress Syndrome in runners: a systematic review and meta-analysis. Open Access J Sports Med. 2013;4:229-41., Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Abnormally decreased regional bone density in athletes with Medial Tibial Stress Syndrome. 2001. p. 712-5., Zimmermann WO, Helmhout PH, Beutler A. Prevention and treatment of exercise related leg pain in young soldiers; a review of the literature and current practice in the Dutch Armed Forces. Journal Of The Royal Army Medical Corps. 2017;163(2):94-103., Garnock C, Witchalls J, Newman P. Predicting individual risk for Medial Tibial Stress Syndrome in navy recruits. Journal of Science and Medicine in Sport. 2018;21(6):586-90., Hauret KG, Jones BH, Canham-Chervak M, Canada S, Bullock SH. Musculoskeletal injuries: description of an under-recognized injury problem among military personnel. American Journal of Preventive Medicine. 2010;38(1S):S61-S70., Jones BH, Canham-Chervak M, Canada S, Mitchener TA, Moore LS. Medical surveillance of injuries in the U.S. Military: descriptive epidemiology and recommendations for improvement. American Journal of Preventive Medicine. 2010;38(1S):S42-S60., Ruscio BA, Jones BH, Canham-Chervak M, Bullock SH, Burnham BR, Rennix CP, et al. A process to identify military injury prevention priorities based on injury type and limited duty days. American Journal of Preventive Medicine. 2010;38(1S):S19-S33., Smith GS, Dannenberg AL, Amoroso PJ. Hospitalization due to injuries in the military. Evaluation of current data and recommendations on their use for injury prevention. American Journal of Preventive Medicine. 2000;18(1S):41-53., Lauder TD, Baker SP, Smith GS, Lincoln AE. Sports and physical training injury hospitalizations in the army. American Journal of Preventive Medicine. 2000;18(1S):118-28., Almeida SA, Williams KM, Shaffer RA, Luz JT, Badong E. A physical training program to reduce musculoskeletal injuries in U.S. Marine Corps Recruits. Naval Health Research Center; 1997., Jones BH, Hansen BC. An armed forces epidemiological board evaluation of injuries in the military. American Journal of Preventive Medicine. 2000;18(3S):14-25., Kaufman KR, Brodine S, Shaffer R. Military training-related injuries. Surveillance, research, and prevention. American Journal of Preventive Medicine. 2000;18(1S):54-63., Jones BH, Knapik JJ. Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sports Med. 1999;27(2S):111-25., Bullock SH, Jones BH, Gilchrist J, Marshall SW. Prevention of physical training-related injuries recommendations for the military and other active populations based on expedited systematic reviews. American Journal of Preventive Medicine. 2010;38(1S):S156-S81., Andersen K, Grimshaw P, Kelso R, Bentley D. Musculoskeletal lower limb injury risk in army populations. Sports Medicine-Open. 2016;2(1):1., Knapik J, Ang P, Reynolds K, Jones B. Physical fitness, age, and injury incidence in infantry soldiers. Journal of Occupational and Environmental Medicine. 1993;35(6):598-603., Abt JP, Sell TC, Lovalekar MT, Keenan KA, Bozich AJ, Lephart SM, et al. Injury epidemiology of U.S. Army special operations forces. Military Medicine. 2014;179(10):1106-12., Teyhen DS, Shaffer SW, Butler RJ, Goffar SL, Kiesel KB, Plisky PJ, et al. What risk factors are associated with musculoskeletal injury in US Army Rangers? A prospective prognostic study. Clinical Orthopaedics and Related Research. 2015;473(9):2948-58., Neves EB, Eraso NM, Narváez YS, Rairan FSG, Garcia RCF. Musculoskeletal injuries in sergeants training courses from Brazil and Colombia. Journal of Science and Medicine in Sport. 2017;20(2S):S117., Yancosek KE, Roy T, Erickson M. Rehabilitation programs for musculoskeletal injuries in military personnel. Current Opinion in Rheumatology. 2012;24(2):232-6., Songer TJ, LaPorte RE. Disabilities due to injury in the military. American Journal of Preventive Medicine. 2000;18(3S):33-40., Lincoln AE, Smith GS, Amoroso PJ, Bell NS. The natural history and risk factors of musculoskeletal conditions resulting in disability among US Army personnel. Work. 2002;18(2):99., Knapik JJ, Canham-Chervak M, Hauret K, Hoedebecke E, Laurin MJ, Cuthie J. Discharges during U.S. Army basic training: injury rates and risk factors. Military Medicine. 2001;166(7):641-7., Psaila M, Ranson C. Risk factors for lower leg, ankle and foot injuries during basic military training in the Maltese Armed Forces. Physical Therapy in Sport. 2017;24:7-12., Hewett TE, Myer GD, Ford KR, Paterno MV, Colosimo AJ, Heidt Jr RS, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. American Journal of Sports Medicine. 2005;33(4):492-501., Barnes CA, Henderson G, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. Journal of Science and Medicine in Sport. 2010;13(4):397-402., Iguchi J, Watanabe Y, Kimura M, Fujisawa Y, Hojo T, Yuasa Y, et al. Risk factors for injury among japanese collegiate players of american football based on performance test results. Journal Of Strength And Conditioning Research. 2016;30(12):3405-11., Orr R, Pope R, Peterson S, Hinton B, Stierli M. Leg power as an indicator of risk of injury or illness in police recruits. International Journal of Environmental Research and Public Health. 2016;13(2)., Gómez-Piqueras P, González-Víllora S, Sainz de Baranda Andújar MDP, Contreras-Jordán OR. Functional assessment and injury Risk in a professional soccer team. Sports (Basel, Switzerland). 2017;5(1)., Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clinical Biomechanics. 2011;26(1):23-8., Powell HC, Silbernagel KG, Brorsson A, Tranberg R, Willy RW. Individuals post-Achilles tendon rupture exhibit asymmetrical knee and ankle kinetics and loading rates during a drop countermovement jump. Journal of Orthopaedic and Sports Physical Therapy. 2018;48(1):34-43., Bisseling RW, Hot AL, Bredeweg SW, Zwerver J, Mulde T. Are the take-off and landing phase dynamics of the volleyball spike jump related to patellar tendinopathy? British Journal of Sports Medicine. 2008;42(6):483-9., Bisseling RW, Hof AL, Bredeweg SW, Zwerver J, Mulder T. Relationship between landing strategy and patellar tendinopathy in volleyball. British Journal of Sports Medicine. 2007;41(7):e8., Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI. Landing adaptations after ACL reconstruction. Medicine and Science in Sports and Exercise. 2002;34(9):1408-13., Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskeletal Disorders. 2006;7., Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine. 2007;17(4):258-62., Doherty C, Sweeney K, Caulfield B, Delahunt E, Bleakley C, Hertel J, et al. Lower extremity coordination and symmetry patterns during a drop vertical jump task following acute ankle sprain. Human Movement Science. 2014;38:34-46., Menzel H-J, Chagas MH, Szmuchrowski LA, Araujo SRS, de Andrade AGP, de Jesus-Moraleida FR. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. Journal Of Strength And Conditioning Research. 2013;27(5):1370-7., Fischer F, Fink C, Blank C, Dünnwald T, Gföller P, Hoser C, et al. Isokinetic extension strength is associated with single-leg vertical jump height. Orthopaedic Journal of Sports Medicine. 2017;5(11)., Claudino JG, Mezêncio B, Amadio AC, Serrão JC, Cronin J, McMaster DT, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. Journal of Science and Medicine in Sport. 2017;20(4):397-402., Wang H, Frame J, Ozimek E, Leib D, Dugan EL. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Research Quarterly for Exercise and Sport. 2013;84(3):305-12., Santtila M, Kyröläinen H, Häkkinen K. Changes in maximal and explosive strength, electromyography, and muscle thickness of lower and upper extremities induced by combined strength and endurance training in soldiers. Journal Of Strength And Conditioning Research. 2009;23(4):1300-8., O’Kane JW, Sabado L, Tencer A, Neradilek M, Polissar N, Schiff MA. Risk factors for lower extremity overuse injuries in female youth soccer players. Orthopaedic Journal of Sports Medicine. 2017;5(10)., Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. 2010. p. 1968-78., Yates B, White S. The incidence and risk factors in the development of Medial Tibial Stress Syndrome among naval recruits. American Journal of Sports Medicine. 2004;32(3):772-80., Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, et al. Risk factors and prognostic indicators for Medial Tibial Stress Syndrome. Scandinavian Journal of Medicine and Science in Sports. 2012;22(1):34-9., Sobhani V, Shakibaee A, Jahandideh D, Aghda AK, Meybodi MK, Delavari A. Studying the relation between Medial Tibial Stress Syndrome and anatomic and anthropometric characteristics of military male personnel. Asian Journal of Sports Medicine. 2015;6(2):1-5., Burne SG, Khan KM, Boudville PB, Mallet RJ, Newman PM, Steinman LJ, et al. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. British Journal of Sports Medicine. 2004;38(4):441-5., Plisky MS, Rauh MJ, Underwood FB, Tank RT, Heiderscheit B. Medial Tibial Stress Syndrome in high school cross-country runners: incidence and risk factors. Journal of Orthopaedic and Sports Physical Therapy. 2007;37(2):40-7., Grier T, Canham-Chervak M, McNulty V, Jones BH. Extreme conditioning programs and injury risk in a US Army brigade combat team. US Army Medical Department journal. 2013:36-47., Orgel E, Sposto R, Freyer DR, Mittelman SD, Mueske NM, Gilsanz V. Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leukemia and Lymphoma. 2018;59(1):138-45., DANE. Pobreza Monetaria y Multidimensional en Colombia: año 2017. 2018., Tounsi M, Aouichaoui C, Bouhlel E, Tabka Z, Trabelsi Y. Effect of socioeconomic status on leg muscle power in tunisian adolescent athletes. Science and Sports. 2017;32(5):303-11., El Hage R, Zakhem E, Zunquin G, Theunynck D, Moussa E, Maalouf G. Performances in vertical jump and horizontal jump tests are positive determinants of hip bone mineral density in a group of young adult men. Journal of Clinical Densitometry. 2015;18(1):136-7., Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. The American Journal of Sports Medicine. 2006;34(2):299-311., Song J, Choe K, Neary M, Cameron KL, Zifchock RA, Trepa M, et al. Comprehensive biomechanical characterization of feet in USMA cadets: comparison across race, gender, arch flexibility, and foot types. Gait and Posture. 2018;60:175-80., Knapik JJ, Sharp MA, Canham-Chervak M, Hauret K, Patton JF, Jones BH. Risk factors for training-related injuries among men and women in basic combat training. Med Sci Sports Exerc. 2001;33(6):946-54., Cormie P, Newton RU, McGuigan MR. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Medicine and Science in Sports and Exercise. 2010;42(9):1731-44., Jakobsen MD, Sundstrup E, Andersen LL, Randers MB, Krustrup P, Kjær M, et al. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science. 2012;31(4):970-86., Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology. 2001;84(3):206-12., Siegmund JA, Huxel KC, Swanik CB. Compensatory mechanisms in basketball players with jumper's knee. Journal of Sport Rehabilitation. 2008;17(4):358-71., Vernillo G, Pisoni C, Thiebat G. Strength asymmetry between front and rear leg in elite snowboard athletes. Clinical Journal of Sport Medicine. 2016;26(1):83-5., Fort-Vanmeerhaeghe A, Montalvo AM, Sitjà-Rabert M, Kiefer AW, Myer GD. Neuromuscular asymmetries in the lower limbs of elite female youth basketball players and the application of the skillful limb model of comparison. Physical Therapy in Sport. 2015;16(4):317-23., Linkenauger SA, Stefanucci JK, Proffitt DR, Witt JK, Bakdash JZ. Asymmetrical body perception: a possible role for neural body representations. Psychological Science. 2009;20(11):1373-80., Lopes TJA, Simic M, Pappas E, Bunn PS, Terra BS, Alves DS, et al. Prevalence of musculoskeletal symptoms among brazilian merchant navy cadets: differences between sexes and school years. Military Medicine. 2017;182(11):e1967-e72., Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Medicine and Science in Sports and Exercise. 1999;31(8):1176-82., Repositorio EdocUR-U. Rosario, Universidad del Rosario, instacron:Universidad del Rosario
- Accession number :
- edsair.doi.dedup.....d855075bf749c076d189a589ff2379df
- Full Text :
- https://doi.org/10.48713/10336_19914