Back to Search
Start Over
Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions
- Source :
- BIOELECTROCHEMISTRY, r-CIPF: Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), Centro de Investigación Principe Felipe (CIPF), r-CIPF. Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), instname, Cervera Montesinos, Javier Meseguer, Salvador Levin, Michael Mafé, Salvador 2020 Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions Bioelectrochemistry 132 107410-1 107410-12
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Robust control of anterior-posterior axial patterning during regeneration is mediated by bioelectric signaling. However, a number of systems-level properties of bioelectrochemical circuits, including stochastic outcomes such as seen in permanently de-stabilized "cryptic" flatworms, are not completely understood. We present a bioelectrical model for head-tail patterning that combines single-cell characteristics such as membrane ion channels with multicellular community effects via voltage-gated gap junctions. It complements the biochemically-focused models by describing the effects of intercellular electrochemical coupling, cutting plane, and gap junction blocking of the multicellular ensemble. We provide qualitative insights into recent experiments concerning planarian anterior/posterior polarity by showing that: (i) bioelectrical signals can help separated cell domains to know their relative position after injury and contribute to the transitions between the abnormal double-head state and the normal head tail state; (ii) the bioelectrical phase-space of the system shows a bi-stability region that can be interpreted as the cryptic system state; and (iii) context-dependent responses are obtained depending on the cutting plane position, the initial bioelectrical state of the multicellular system, and the intercellular connectivity. The model reveals how simple bioelectric circuits can exhibit complex tissue-level patterning and suggests strategies for regenerative control in vivo and in synthetic biology contexts. (C) 2019 Elsevier B.V. All rights reserved.
- Subjects :
- Bioquímica
Tail
Polarity (physics)
Cèl·lules
Biophysics
Head-tail patterning
02 engineering and technology
01 natural sciences
Ion Channels
Gap junctional communication
Electrochemistry
Animals
Regeneration
Physical and Theoretical Chemistry
Ion channel
Body Patterning
Physics
biology
Regeneration (biology)
010401 analytical chemistry
Gap junction
Gap Junctions
Planarians
General Medicine
021001 nanoscience & nanotechnology
biology.organism_classification
Electrophysiological Phenomena
0104 chemical sciences
Coupling (electronics)
Multicellular organism
Bioelectricity
Planarian
Positional information
0210 nano-technology
Head
Intracellular
Subjects
Details
- ISSN :
- 15675394
- Database :
- OpenAIRE
- Journal :
- BIOELECTROCHEMISTRY, r-CIPF: Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), Centro de Investigación Principe Felipe (CIPF), r-CIPF. Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF), instname, Cervera Montesinos, Javier Meseguer, Salvador Levin, Michael Mafé, Salvador 2020 Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions Bioelectrochemistry 132 107410-1 107410-12
- Accession number :
- edsair.doi.dedup.....d84cf81ab15933079d8dca20497961bb