Back to Search Start Over

Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch Of Reionization

Authors :
Michael Pagano
Jing Liu
Adrian Liu
Nicholas S Kern
Aaron Ewall-Wice
Philip Bull
Robert Pascua
Siamak Ravanbakhsh
Zara Abdurashidova
Tyrone Adams
James E Aguirre
Paul Alexander
Zaki S Ali
Rushelle Baartman
Yanga Balfour
Adam P Beardsley
Gianni Bernardi
Tashalee S Billings
Judd D Bowman
Richard F Bradley
Jacob Burba
Steven Carey
Chris L Carilli
Carina Cheng
David R DeBoer
Eloy de Lera Acedo
Matt Dexter
Joshua S Dillon
Nico Eksteen
John Ely
Nicolas Fagnoni
Randall Fritz
Steven R Furlanetto
Kingsley Gale-Sides
Brian Glendenning
Deepthi Gorthi
Bradley Greig
Jasper Grobbelaar
Ziyaad Halday
Bryna J Hazelton
Jacqueline N Hewitt
Jack Hickish
Daniel C Jacobs
Austin Julius
MacCalvin Kariseb
Joshua Kerrigan
Piyanat Kittiwisit
Saul A Kohn
Matthew Kolopanis
Adam Lanman
Paul La Plante
Anita Loots
David Harold Edward MacMahon
Lourence Malan
Cresshim Malgas
Keith Malgas
Bradley Marero
Zachary E Martinot
Andrei Mesinger
Mathakane Molewa
Miguel F Morales
Tshegofalang Mosiane
Abraham R Neben
Bojan Nikolic
Hans Nuwegeld
Aaron R Parsons
Nipanjana Patra
Samantha Pieterse
Nima Razavi-Ghods
James Robnett
Kathryn Rosie
Peter Sims
Craig Smith
Hilton Swarts
Nithyanandan Thyagarajan
Pieter van Wyngaarden
Peter K G Williams
Haoxuan Zheng
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

Radio Frequency Interference (RFI) is one of the systematic challenges preventing 21cm interferometric instruments from detecting the Epoch of Reionization. To mitigate the effects of RFI on data analysis pipelines, numerous inpaint techniques have been developed to restore RFI corrupted data. We examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that capable of inpainting RFI corrupted data in interferometric instruments. We train our network on simulated data and show that our network is capable at inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modeling are best suited for inpainting over narrowband RFI. We also show that with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and CLEAN provide the best performance for intermittent ``narrowband'' RFI while Gaussian Progress Regression (GPR) and Least Squares Spectral Analysis (LSSA) provide the best performance for larger RFI gaps. However we caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We find these results to be consistent in both simulated and real visibilities. We show that all inpainting techniques reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that in the future, as the noise level of the data comes down, CLEAN and DPSS are most capable of reproducing the fine frequency structure in the visibilities of HERA data.<br />Comment: 21 pages, 13 figures

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....d823c61efc103868357be2b4452b86ce
Full Text :
https://doi.org/10.48550/arxiv.2210.14927