Back to Search
Start Over
Space Telescope and optical reverberation mapping project. XI. Disk-wind characteristics and contributions to the very broad emission lines of NGC 5548
- Source :
- The Astrophysical Journal, 898(2), 141, Dehghanian, M, Ferland, G J, Kriss, G A, Peterson, B M, Korista, K T, Goad, M R, Chatzikos, M, Guzman, F, de Rosa, G, Mehdipour, M, Kaastra, J, Mathur, S, Vestergaard, M, Proga, D, Waters, T, Bentz, M C, Bisogni, S, Brandt, W N, Dalla Bonta, E, Fausnaugh, M M, Gelbord, J M, Horne, K, McHardy, I M, Pogge, R W & Starkey, D A 2020, ' Space Telescope and Optical Reverberation Mapping Project. XI. Disk-wind Characteristics and Contributions to the Very Broad Emission Lines of NGC 5548 ', Astrophysical Journal, vol. 898, no. 2, 141 . https://doi.org/10.3847/1538-4357/ab9cb2
- Publication Year :
- 2020
-
Abstract
- In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the intrinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produce the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the BLR, leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the SED striking the BLR, producing the observed decorrelations. In this work, we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and HST observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He II and Fe K? emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe K? line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.<br />Comment: Accepted for publication in ApJ
- Subjects :
- ACTIVE GALACTIC NUCLEI
Seyfert [Galaxies]
Active galactic nucleus
010504 meteorology & atmospheric sciences
active [Galaxies]
individual (NGC 5548) [Galaxies]
Astrophysics::High Energy Astrophysical Phenomena
Continuum (design consultancy)
NDAS
FOS: Physical sciences
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
7. Clean energy
Spitzer Space Telescope
0103 physical sciences
QB Astronomy
SPECTRA
Astrophysics::Solar and Stellar Astrophysics
Emission spectrum
010303 astronomy & astrophysics
Optical depth
QC
Astrophysics::Galaxy Astrophysics
0105 earth and related environmental sciences
Line (formation)
QB
Physics
High Energy Astrophysical Phenomena (astro-ph.HE)
Active galactic nuclei
Seyfert galaxies
CLOUDS
Astronomy and Astrophysics
Astrophysics - Astrophysics of Galaxies
Galaxy
QC Physics
13. Climate action
Space and Planetary Science
nuclei [Galaxies]
formation [Line]
Astrophysics of Galaxies (astro-ph.GA)
BLACK-HOLE
Active galaxies
Reverberation mapping
Astrophysics - High Energy Astrophysical Phenomena
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal, 898(2), 141, Dehghanian, M, Ferland, G J, Kriss, G A, Peterson, B M, Korista, K T, Goad, M R, Chatzikos, M, Guzman, F, de Rosa, G, Mehdipour, M, Kaastra, J, Mathur, S, Vestergaard, M, Proga, D, Waters, T, Bentz, M C, Bisogni, S, Brandt, W N, Dalla Bonta, E, Fausnaugh, M M, Gelbord, J M, Horne, K, McHardy, I M, Pogge, R W & Starkey, D A 2020, ' Space Telescope and Optical Reverberation Mapping Project. XI. Disk-wind Characteristics and Contributions to the Very Broad Emission Lines of NGC 5548 ', Astrophysical Journal, vol. 898, no. 2, 141 . https://doi.org/10.3847/1538-4357/ab9cb2
- Accession number :
- edsair.doi.dedup.....d80811706c461a53a3c1d3f381c1702d
- Full Text :
- https://doi.org/10.3847/1538-4357/ab9cb2