Back to Search Start Over

Mitochondrial miRNA494-3p in extracellular vesicles participates in cellular interplay of iPS-Derived human retinal pigment epithelium with macrophages

Authors :
Yohei Otsuki
Tomoko Fujita
Eiko Ito
Chie Sotozono
Atsushi Mukai
Junji Hamuro
Shigeru Kinoshita
Tadao Maeda
Morio Ueno
Source :
Experimental eye research. 208
Publication Year :
2021

Abstract

To explore new molecular targets for therapy in human model systems by discerning the role of extracellular vesicle (EV) microRNAs (miRs) secreted by human retinal pigment epithelium (hRPE) cells and their cellular interplay with macrophages (Mps). Human Mps differentiated from THP-1 cells stimulated by phorbol myristate acetate were co-cultured with induced pluripotent stem cell-derived differentiated hRPE (iPS-hRPE) cells in Transwell® system separated by 0.40 μm or 0.03 μm filters. EV-associated CD63+ proteins (CD63+ EV) were detected by western blotting, and secreted EVs were analyzed by Nanosight tracking. The miR profiles of the secreted EVs were determined using 3D-gene human microRNA chips (Toray Industries, Inc.). Levels of CD63+ EV were increased in co-cultures concomitantly with the increased production of EV particles (50–150 nm). The increased production of EVs was associated with higher production of MCP-1, IL-6, IL-8 from hRPE cells, and VEGF and repressed production of TNF-α from Mps and pigment epithelium-derived factor (PEDF) from RPE cells. Ultracentrifugation of semi-purified EVs increased the secretion of these pro-inflammatory cytokines and EV particles from hRPE cells, but this effect was eliminated in transwells equipped with 0.03 μm filters, whereas no repression of PEDF and TNF-α secretion occurred. 3D-gene miR analysis revealed a selective increase in secretion of miR494-3p in EVs from iPS-hRPE cells during the interplay with Mps. The miRs in EVs secreted by hRPE cells may have a critical role in the vicious inflammatory cycle, whereas repression of TNF-α and PEDF require cell-to-cell contact that is independent of EVs or exosomes. MiR494-3p may be a candidate molecular target of diagnosis and therapy for age-related macular degeneration.

Details

ISSN :
10960007
Volume :
208
Database :
OpenAIRE
Journal :
Experimental eye research
Accession number :
edsair.doi.dedup.....d7f1284ddca7d534e8284a2b50380520