Back to Search Start Over

Ionic liquid enables highly efficient low temperature desalination by directional solvent extraction

Authors :
Tengfei Luo
Brandon L. Ashfeld
Jiaji Guo
Zachary D. Tucker
Yu Wang
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-7 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Seawater desalination plays a critical role in addressing the global water shortage challenge. Directional Solvent Extraction (DSE) is an emerging non-membrane desalination technology that features the ability to utilize very low temperature waste heat (as low as 40 °C). This is enabled by the subtly balanced solubility properties of directional solvents, which do not dissolve in water but can dissolve water and reject salt ions. However, the low water yield of the state-of-the-art directional solvent (decanoic acid) significantly limits its throughput and energy efficiency. In this paper, we demonstrate that by using ionic liquid as a new directional solvent, saline water can be desalinated with much higher production rate and thus significantly lower the energy and exergy consumptions. The ionic liquid identified suitable for DSE is [emim][Tf2N], which has a much (~10×) higher water yield than the currently used decanoic acid. Using molecular dynamics simulations with Gibbs free energy calculations, we reveal that water dissolving in [emim][Tf2N] is energetically favorable, but it takes significant energy for [emim][Tf2N] ions to dissolve in water. Our findings may significantly advance the DSE technology as a solution to the challenges in the global water-energy nexus.<br />Directional Solvent Extraction is an emerging non-membrane desalination technology for sea water desalination but is limited by throughput and energy efficiency. Here, the authors demonstrate that the production rate and energy efficiency can be increased by using ionic liquids as directional solvent.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....d7e1c99ba5ab300ea597dc4ab14dbd45