Back to Search Start Over

Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal-Organic Frameworks

Authors :
M. Ben Yahia
Laurent Pedesseau
C. Combelles
Marie-Liesse Doublet
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Réseau sur le stockage électrochimique de l'énergie (RS2E)
Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
ANR-06-BLAN-0202,CONDMOFs,Preparation and characterization of lithium-inserted iron(i,iI) nanoporous hybrid solids(2006)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Source :
Journal of Physical Chemistry C, Journal of Physical Chemistry C, 2010, 114, pp.9518-9527. ⟨10.1021/jp1016455⟩, Journal of Physical Chemistry C, American Chemical Society, 2010, 114, pp.9518-9527. ⟨10.1021/jp1016455⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; In the field of energy storage and Li-ion batteries, searching for new (positive) electrode materials with better electrochemical performances than those of transition-metal oxides is of permanent concern. To that aim, very simple concepts of chemical bonding can be used to find out the origin of the electrode limitations and to guide experimentalists for the design of new promising materials. This local approach was recently applied to hybrid architectures, such as metal-organic frameworks (MOFs), and allowed some of us to demonstrate the first reversible lithium insertion into the MIL53(Fe) positive electrode. In this paper, we combine firstprinciples density functional calculations and local chemical bond analyses to fully interpret the redox mechanism of this material. Its reactivity versus elemental lithium is investigated as a function of (i) the lithium composition from xLi/Fe ) 0-1, (ii) the lithium distribution over the most probable Li sites, and (iii) the OH/F substitution ratio along the redox chains. The results show that the MIL53(Fe) is a weak antiferromagnet at T ) 0 K with iron ions in the high-spin state (Fe3+, S ) 5/2). It reacts with lithium through a two-step insertion/conversion mechanism. The insertion reaction is perfectly reversible and proceeds in two steps: first, a single-phase reaction whose capacity increases linearly with the fluorine content in the starting material, then a two-phase reaction that ends around xLi/Fe ) 0.5 due to the stabilization of a localized Fe2+/Fe3+ mixed-valence state along the inorganic chains. Further lithium insertion into Li0.5MIL53(Fe) is shown to provoke an irreversible conversion reaction due to a complete loss of the local interactions between the inorganic and organic networks of the MOF architecture. On the basis of this interpretation, several alternatives to improve the capacity of these materials can be proposed by means of appropriate ligand functionalization and/or use of electrochemically active molecules within the large open space occurring in such porous materials.

Details

Language :
English
ISSN :
19327447 and 19327455
Database :
OpenAIRE
Journal :
Journal of Physical Chemistry C, Journal of Physical Chemistry C, 2010, 114, pp.9518-9527. ⟨10.1021/jp1016455⟩, Journal of Physical Chemistry C, American Chemical Society, 2010, 114, pp.9518-9527. ⟨10.1021/jp1016455⟩
Accession number :
edsair.doi.dedup.....d7cabc60f0383f62e04577952bf6b6b3
Full Text :
https://doi.org/10.1021/jp1016455⟩