Back to Search Start Over

Towards a Denotational Semantics for Proofs in Constructive Modal Logic

Authors :
Acclavio, Matteo
Catta, Davide
Straßburger, Lutz
University of Luxembourg [Luxembourg]
Exploration et exploitation de données textuelles (TEXTE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Automatisation et ReprésenTation: fOndation du calcUl et de la déducTion (PARTOUT)
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Montpellier (UM)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Inria Saclay - Ile de France
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a linear fragment (arena net) and a parallel weakening-contraction fragment (skew fibration). In particular we provide an encoding of modal formulas by means of directed graphs (modal arenas), and an encoding of linear proofs as modal arenas equipped with vertex partitions satisfying topological criteria. The second semantics is given by means of winning innocent strategies of a two-player game over modal arenas. This is given by extending the Heijltjes-Hughes-Stra{\ss}burger correspondence between intuitionistic combinatorial proofs and winning innocent strategies in a Hyland-Ong arena. Using our first result, we provide a characterisation of winning strategies for games on a modal arena corresponding to proofs with modalities.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....d7c81309a3c5ccc3197bc179b8c382d9
Full Text :
https://doi.org/10.48550/arxiv.2104.09115