Back to Search Start Over

Gravity or turbulence? - II. Evolving column density probability distribution functions in molecular clouds

Authors :
Javier Ballesteros-Paredes
Enrique Vázquez-Semadeni
Pedro Colín
Fabian Heitsch
Adriana Gazol
Lee Hartmann
Source :
Monthly Notices of the Royal Astronomical Society. 416:1436-1442
Publication Year :
2011
Publisher :
Oxford University Press (OUP), 2011.

Abstract

It has been recently shown that molecular clouds do not exhibit a unique shape for the column density probability distribution function (Npdf). Instead, clouds without star formation seem to possess a lognormal distribution, while clouds with active star formation develope a power-law tail at high column densities. The lognormal behavior of the Npdf has been interpreted in terms of turbulent motions dominating the dynamics of the clouds, while the power-law behavior occurs when the cloud is dominated by gravity. In the present contribution we use thermally bi-stable numerical simulations of cloud formation and evolution to show that, indeed, these two regimes can be understood in terms of the formation and evolution of molecular clouds: a very narrow lognormal regime appears when the cloud is being assembled. However, as the global gravitational contraction occurs, the initial density fluctuations are enhanced, resulting, first, in a wider lognormal Npdf, and later, in a power-law Npdf. We thus suggest that the observed Npdf of molecular clouds are a manifestation of their global gravitationally contracting state. We also show that, contrary to recent suggestions, the exact value of the power-law slope is not unique, as it depends on the projection in which the cloud is being observed.

Details

ISSN :
00358711
Volume :
416
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....d7a98a808767e95d321ca85434b31caf
Full Text :
https://doi.org/10.1111/j.1365-2966.2011.19141.x