Back to Search Start Over

Enhanced photopromoted electron transfer over a bilayer WO3 n-n heterojunction prepared by RF diode sputtering

Authors :
Elena Selli
Espedito Vassallo
Silvia Maria Pietralunga
Gian Luca Chiarello
Mirko Magni
Alberto Tagliaferri
Massimo Bernareggi
M. Pedroni
Source :
Journal of Materials Chemistry A 5 (2017): 12977–12989. doi:10.1039/c7ta03887a, info:cnr-pdr/source/autori:Chiarello, GL (Chiarello, Gian Luca)[ 1 ] ; Bernareggi, M (Bernareggi, Massimo)[ 1 ] ; Pedroni, M (Pedroni, Matteo)[ 2 ] ; Magni, M (Magni, Mirko)[ 1 ] ; Pietralunga, SM (Pietralunga, Silvia M.)[ 4,5 ] ; Tagliaferri, A (Tagliaferri, Alberto)[ 3,4 ] ; Espedito, VB (Vassallo, Espedito)[ 2 ] ; Selli, E (Selli, Elena)[ 1 ]/titolo:Enhanced photopromoted electron transfer over a bilayer WO3 n-n heterojunction prepared by RF diode sputtering/doi:10.1039%2Fc7ta03887a/rivista:Journal of Materials Chemistry A/anno:2017/pagina_da:12977/pagina_a:12989/intervallo_pagine:12977–12989/volume:5
Publication Year :
2017
Publisher :
ROYAL SOC CHEMISTRY, ENGLAND, 2017.

Abstract

A bilayer WO3 photoelectrode was obtained by radio frequency (RF) plasma sputtering in a reactive 40% O-2/Ar atmosphere by depositing two successive WO3 coatings on a tungsten foil at two different total gas pressures (3 Pa and 1.7 Pa, respectively), followed by calcination at 600 degrees C. Two monolayer samples deposited at each of the two pressures and a bilayer sample deposited at inverted pressures were also prepared. Their photoelectrocatalytic (PEC) activity was evaluated by both Incident Photon-to-Current Efficiency (IPCE) measurements and separate evolution of H-2 and O-2 by water splitting in a two-compartment PEC cell. SEM analysis revealed that the photoanodes have a nanostructured porous double layer surmounting a columnar basement (Staffa-like morphology, after the name of the Scottish island). Mott-Schottky analysis showed that the single layer deposited at 3 Pa has a conduction flat band potential 0.1 V more positive than that deposited at 1.7 Pa. The equivalent n-n heterojunction at the interface of the double-layer creates a built-in electric field that facilitates the photopromoted electron transfer toward the lower lying conduction band material, while the columnar innermost layer introduces percolation paths for efficient electron transport toward the conductive tungsten foil. Both phenomena contribute to decrease the interfacial charge transfer resistance (R-ct) and lead up to a ca. 30% increase in the PEC performance compared to the monolayer and the inverted bilayer coatings and to a 93% faradaic efficiency, which is among the highest reported so far for WO3 photoanodes. Upon methanol addition an outstanding 4-fold photocurrent density increase up to 6.3 mA cm(-2) was attained over the bilayer WO3 photoanode, much larger than the usually observed current doubling effect.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A 5 (2017): 12977–12989. doi:10.1039/c7ta03887a, info:cnr-pdr/source/autori:Chiarello, GL (Chiarello, Gian Luca)[ 1 ] ; Bernareggi, M (Bernareggi, Massimo)[ 1 ] ; Pedroni, M (Pedroni, Matteo)[ 2 ] ; Magni, M (Magni, Mirko)[ 1 ] ; Pietralunga, SM (Pietralunga, Silvia M.)[ 4,5 ] ; Tagliaferri, A (Tagliaferri, Alberto)[ 3,4 ] ; Espedito, VB (Vassallo, Espedito)[ 2 ] ; Selli, E (Selli, Elena)[ 1 ]/titolo:Enhanced photopromoted electron transfer over a bilayer WO3 n-n heterojunction prepared by RF diode sputtering/doi:10.1039%2Fc7ta03887a/rivista:Journal of Materials Chemistry A/anno:2017/pagina_da:12977/pagina_a:12989/intervallo_pagine:12977–12989/volume:5
Accession number :
edsair.doi.dedup.....d7a17e001317d58505ab23b5b5384168