Back to Search Start Over

An unsupervised method for on-chip neural spike detection in multi-electrode recording systems

Authors :
Jelena Dragas
David Jäckel
Felix Franke
Andreas Hierlemann
Source :
EMBC
Publication Year :
2013

Abstract

Emerging multi-electrode-based brain-machine interfaces (BMIs) and large multi-electrode arrays used in in vitro experiments, enable recording of single neuron's activity on multiple electrodes and allow for an in-depth investigation of neural preparations, even at a sub-cellular level. However, the use of these devices entails stringent area and power consumption constraints for the signal-processing hardware units. In addition, the high autonomy of these units and an ability to automatically adapt to changes in the recorded neural preparations is required. Implementing spike detection in close proximity to recording electrodes offers the advantage of reducing the transmission data bandwidth. By eliminating the need of transmitting the full, redundant recordings of neural activity and by transmitting only the spike waveforms or spike times, significant power savings can be achieved in the majority of cases. Here, we present a low-complexity, unsupervised, adaptable, real-time spike-detection method targeting multi-electrode recording devices and compare this method to other spike-detection methods with regard to complexity and performance.

Details

ISSN :
26940604
Volume :
2013
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....d776a4f34ac8a30fdbae5e194fc50417