Back to Search Start Over

Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis

Authors :
José García-Nieto
Laetitia Jourdan
Enrique Alba
El-Ghazali Talbi
Departamento Lenguajes y Ciencias de la Computación [Malaga] (LCC)
Universidad de Málaga [Málaga] = University of Málaga [Málaga]
Parallel Cooperative Multi-criteria Optimization (DOLPHIN)
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
Malaga
Espagne
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Ministerio de Ciencia e Innovación (MICIN). España
Junta de Andalucía
Source :
Information Processing Letters, Information Processing Letters, Elsevier, 2009, 109, pp.887--896. ⟨10.1016/j.ipl.2009.03.029⟩, Information Processing Letters, 2009, 109, pp.887--896. ⟨10.1016/j.ipl.2009.03.029⟩, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US)
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

The study of the sensitivity and the specificity of a classification test constitute a powerful kind of analysis since it provides specialists with very detailed information useful for cancer diagnosis. In this work, we propose the use of a multiobjective genetic algorithm for gene selection of Microarray datasets. This algorithm performs gene selection from the point of view of the sensitivity and the specificity, both used as quality indicators of the classification test applied to the previously selected genes. In this algorithm, the classification task is accomplished by Support Vector Machines; in addition a 10-Fold Cross- Validation is applied to the resulting subsets. The emerging behavior of all these techniques used together is noticeable, since this approach is able to offer, in an original and easy way, a wide range of accurate solutions to professionals in this area. The effectiveness of this approach is proved on public cancer datasets by working out new and promising results. A comparative analysis of our approach using two and three objectives, and with other existing algorithms, suggest that our proposal is highly appropriate for solving this problem. Ministerio de Ciencia e Innovación TIN2008-06491-C04-01 Junta de Andalucía P07-TIC-03044

Details

ISSN :
00200190
Volume :
109
Database :
OpenAIRE
Journal :
Information Processing Letters
Accession number :
edsair.doi.dedup.....d74add1de850cbc18b5702cae3c7472d