Back to Search
Start Over
Dynamical approximations for composite quantum systems: Assessment of error estimates for a separable ansatz
- Source :
- Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, 2022, 55 (22), pp.224010. ⟨10.1088/1751-8121/ac6841⟩, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2022, 55 (5), pp.n° 224010. ⟨10.1088/1751-8121/ac6841⟩, Journal of Physics A: Mathematical and Theoretical, 2022, 55 (5), pp.n° 224010. ⟨10.1088/1751-8121/ac6841⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- Numerical studies are presented to assess error estimates for a separable (Hartree) approximation for dynamically evolving composite quantum systems which exhibit distinct scales defined by their mass and frequency ratios. The relevant error estimates were formally described in our previous work Burghardt et al (2021 J. Phys. A: Math. Theor. 54 414002). Specifically, we consider a representative two-dimensional tunneling system where a double well and a harmonic coordinate are cubically coupled. The time-dependent Hartree approximation is compared with a fully correlated solution, for different parameter regimes. The impact of the coupling and the resulting correlations are quantitatively assessed in terms of a time-dependent reaction probability along the tunneling coordinate. We show that the numerical error is correctly predicted on moderate time scales by a theoretically derived error estimate.
- Subjects :
- Statistics and Probability
Chemical Physics (physics.chem-ph)
composite quantum systems
Quantum Physics
scale separation
dimension reduction
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
General Physics and Astronomy
FOS: Physical sciences
Statistical and Nonlinear Physics
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Modeling and Simulation
Physics - Chemical Physics
quantum dynamics
system-bath theory
[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]
Quantum Physics (quant-ph)
Mathematical Physics
quantum tunneling
Subjects
Details
- Language :
- English
- ISSN :
- 17518113 and 17518121
- Database :
- OpenAIRE
- Journal :
- Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, 2022, 55 (22), pp.224010. ⟨10.1088/1751-8121/ac6841⟩, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2022, 55 (5), pp.n° 224010. ⟨10.1088/1751-8121/ac6841⟩, Journal of Physics A: Mathematical and Theoretical, 2022, 55 (5), pp.n° 224010. ⟨10.1088/1751-8121/ac6841⟩
- Accession number :
- edsair.doi.dedup.....d7338b31a26a9f81f9a878a68e142e35
- Full Text :
- https://doi.org/10.1088/1751-8121/ac6841⟩