Back to Search Start Over

Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca)

Authors :
John T. Vaughey
Stephen E. Trask
Saul H. Lapidus
Baris Key
Chen Liao
Fulya Dogan
Binghong Han
Source :
ACS Applied Materials & Interfaces. 11:29780-29790
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Replacing traditional graphite anode by Si anode can greatly improve the energy density of lithium-ion batteries. However, the large volume expansion and the formation of highly reactive lithium silicides during charging cause the continuous lithium and electrolyte consumption as well as the fast decay of Si anodes. In this work, by adding 0.1 M M(TFSI)x (M = Mg, Zn, Al and Ca) as a second salt into the electrolyte, we stabilize the anode chemistry through the in situ formation of Li–M–Si ternary phases during the charging process. First, lithium silicides and magnesium lithium silicides were synthesized as model compounds to investigate the influence of metal doping on the reactivity of lithiated Si. Using solid-state nuclear magnetic resonance spectroscopy, we show that Mg doping can dramatically suppress the chemical reactions between the lithium silicide compounds and common electrolyte solvents. New mixed salt electrolytes were prepared containing M(TFSI)x as a second salt to LiPF6 and tested in comm...

Details

ISSN :
19448252 and 19448244
Volume :
11
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....d72bb71691948b28ff747831fbeb8b82
Full Text :
https://doi.org/10.1021/acsami.9b07270