Back to Search Start Over

Copper(I)-catalyzed asymmetric decarboxylative Mannich reaction enabled by acidic activation of 2H-azirines

Authors :
Liang Yin
Haijun Zhang
Yan-Cheng Xie
Source :
Nature Communications, Vol 10, Iss 1, Pp 1-8 (2019), Nature Communications
Publication Year :
2019
Publisher :
Nature Publishing Group, 2019.

Abstract

Chiral aziridines are structure units found in many biologically active compounds and are important building blocks in organic synthesis. Herein, by merging nucleophilic generation through copper(I)-catalyzed decarboxylation and activation of poorly electrophilic 2H-azirines through protonation with carboxylic acids, an asymmetric decarboxylative Mannich reaction between α,α-disubstituted cyanoacetic acids and 2H-azirines is uncovered, which leads to generation of chiral aziridines containing vicinal tetrasubstituted and acyclic quaternary stereogenic carbon centers in good to excellent diastereo- and enantioselectivities. At last, transformations of the produced chiral aziridine are successfully carried out to deliver synthetically useful compounds.<br />Due to their poor electrophilicity, 2H-azirines do not easily react with nucleophiles. Here, the authors show an acidic activation of 2H-azirines by cyanoacetic acid coupling partners affording chiral aziridines containing vicinal tetrasubstituted and acyclic quaternary stereogenic carbon centers.

Details

Language :
English
ISSN :
20411723
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....d7145d566d75f47a06ff63d332829252
Full Text :
https://doi.org/10.1038/s41467-019-09750-5