Back to Search Start Over

Genome rearrangements and phylogeny reconstruction in Yersinia pestis

Authors :
Olga O. Bochkareva
German M Kanevsky
Elena S Ocheredko
Yaroslav N Lozinsky
Mikhail S. Gelfand
Vera A Khalaycheva
Irena I. Artamonova
Natalia O. Dranenko
Source :
PeerJ, Vol 6, p e4545 (2018)
Publication Year :
2018
Publisher :
PeerJ Inc., 2018.

Abstract

Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis. Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements may resolve topological ambiguities in a phylogenetic tree. We reconstructed the evolutionary history of genome rearrangements in Y. pestis. We also reconciled phylogenetic trees for each of the three CRISPR-loci to obtain an integrated scenario of the CRISPR-cassette evolution. We detected numerous parallel inversions and gain/loss events by the analysis of contradictions between the obtained evolutionary trees. We also tested the hypotheses that large within-replichore inversions tend to be balanced by subsequent reversal events and that the core genes less frequently switch the chain by inversions. Both predictions were not confirmed. Our data indicate that an integrated analysis of sequence-based and inversion-based trees enhances the resolution of phylogenetic reconstruction. In contrast, reconstructions of strain relationships based on solely CRISPR loci may not be reliable, as the history is obscured by large deletions, obliterating the order of spacer gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on gene content.

Details

Language :
English
ISSN :
21678359
Volume :
6
Database :
OpenAIRE
Journal :
PeerJ
Accession number :
edsair.doi.dedup.....d70bc1af26ccdeb617b8e73204aeb9a9